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Abstract

This paper studies how changes in domestic trade costs can cause regions to de-
cline. The agriculture-intensive states of the American Midwest (the ”heartland”) lost
population relative to the rest of the country over the postwar period. I document
that the price of shipping agricultural relative to manufactured goods fell consider-
ably over this same period. To show how these two facts may be linked, I outline a
simple version of a trade model and derive comparative statics of the price, produc-
tion, and population effects of a decline in agricultural shipping costs. The model
highlights how the input-output structure of the economy contributes to these pop-
ulation effects. I validate the model’s predictions by studying how a 1963 Supreme
Court ruling that sharply reduced the cost of shipping wheat versus flour affected the
flour milling industry. Finally, I calibrate a multi-sector, multi-location version of the
model to the U.S. in 1950 and find that observed declines in agricultural trade costs
can explain nearly 10% of the postwar population decline in the heartland.
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For the past 30 years, our population has also been growing and shifting. The result is exemplified in the

vast areas of rural America emptying out of people and of promise...

— President Richard Nixon, State of the Union, 1970

1 Introduction

Over the past century, the spatial distribution of economic activity within many coun-

tries, especially the United States, has changed dramatically. These large shifts in where

people live, where they work, and where goods are produced have welfare implications

for people living in different places. Inevitably, people living in some regions end up bet-

ter off than those in other regions. Why have some regions prospered while others have

declined? What role have changes in trade costs within countries played in shaping these

welfare gains and welfare losses across locations? To make progress on these questions,

this paper examines a region over a period of significant decline: the agriculture-intensive

states of the American Midwest (the “Heartland”) over the postwar period.1

Between 1950 and 1980, the percent of the U.S. population living in Heartland states

fell by 18%, from 9% to 7% (U.S. Census). By this measure, the Heartland fared worse

than almost any other Census division.2 Figure 1 maps the percentage change in the share

of the national population living in each state between 1950 and 1980.3 States colored in

(darker) green grew (more) while states in (darker) orange shrunk (more).4 The Heartland

is outlined in black. Four Heartland states – the Dakotas plus Iowa and Nebraska – made

up half of the top eight states in terms of relative population declines over the period.

About one-third of all U.S. counties experienced net out-migration over the period; of

1I define the Heartland as the set of states in the Census’ West North Central division which corresponds
to the non-Rustbelt Midwestern states. The Midwest follows the U.S. Census classification. Following
Alder, Lagakos and Ohanian (2014), I define the Rustbelt as: Illinois, Indiana, Michigan, New York, Ohio,
Pennsylvania, West Virginia and Wisconsin. Thus, the non-Rustbelt Midwest includes Minnesota, Iowa,
Missouri, the Dakotas, Nebraska, and Kansas

2There are nine Census divisions. The Middle Atlantic division experienced a percentage decline in
relative population of about the same magnitude (18%).

3Figure A.1 plots percentage of the U.S. population living in each Census region in each year between
1900 and 2000. While there was a small decline in the Midwest’s relative population preceding this period,
it accelerated after the war.

4I focus here on state-level data because my eventual model calibration will be at the state level due to
data constraints. However, the pattern is equally striking at the county level.
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those, 35% were in the Heartland, even though the Heartland includes less than 20% of

all U.S. counties.

The Heartland states are sometimes referred to as the “breadbasket” because they

largely specialize in producing agricultural goods, especially bulk grains like wheat (Wishart

(2004)).5 In 1950, North Dakota and South Dakota led the nation as the states with the

largest share of gross output coming from the agricultural sector while Iowa and Ne-

braska were close behind. Although Heartland states housed only 9% of the population

in 1950, together they produced nearly a quarter of the nation’s agricultural output. Pop-

ulation declines in these rural, agriculture-intensive areas received considerable policy

attention during the period. President Nixon’s 1970 State of the Union remarked on the

need to ”stem the migration to urban centers”. This rural to urban migration also mo-

tivated the passage of the Rural Development Act of 1972, an early example of a place-

based policy, which provided financial support to rural areas. Its stated purpose was to

“foster a balanced national development” (Rural Development Act, 1972).

This paper proposes, studies, and quantifies the importance of a novel explanation

for this decline of the American Heartland: changes in the structure of domestic trade

costs.6 Freight rates for bulk (agricultural) goods fell considerably relative to those for

finished (manufactured) products beginning in the 1950s. To document this fact, I digi-

tized records from the Interstate Commerce Commission (ICC), the regulatory body for

freight transport during the period. The ICC annually published the Freight Commodity

Statistics, from 1928 to 1980, in which it reported aggregate data on tons shipped and

revenue earned by major rail carriers.7 To measure shipping costs levied by shippers on

producers, I compute the revenue per ton earned by railroad companies for shipments of

goods from each commodity class.8

5Figure A.2 plots the percentage of exports in agriculture for each state.
6This hypothesis, that changes in the structure of trade costs within the postwar U.S. had important

effects on the distribution of economic activity, received some attention among economists during the pe-
riod. For example, see Meyer and Morton (1975) who wrote that, “[T]he lower freight rates for transporting
bulk commodities than their fabricated equivalent commonly encourages manufacturers to substitute the
transport of bulk commodities for the movement of the finished goods.”

7Total revenue is the total payments made by producers to railroad shippers.
8Revenue per ton is a standard measure of shipping costs used in the literature; for example, see Hyslop

and Dahl (1964). However, in addition to the tariff charged by shippers, revenue per ton may also reflect
changes in the underlying distance shipped. I control for this using data on bilateral trade costs in Section
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Figure 1: The Postwar Decline of the Heartland, 1950 to 1980

Note: This figure shows the percentage change in the share of the national population living in each state
between 1950 and 1980. Source: U.S. Census, 1950 and 1980.

In Figure 2, I plot annual real revenue per ton earned by the railroads in each year,

separately for agricultural goods and manufactured goods.9 I find large declines in the

shipping costs of agricultural relative to manufactured goods beginning in the postwar

period.10 Revenue per ton earned in these each of these two sectors was relatively con-

stant until around 1955 at which point it began to fall sharply in the agricultural sector.

By 1967, agricultural revenue per ton was nearly one third lower than manufacturing

revenue per ton. Qualitative evidence suggests that most of this decline was driven by

innovations in the shipment of bulk grain products; new types of rail cars, like the unit

train and the covered hopper car, allowed railroads to significantly reduce the cost of

service on these products particularly over long distances.11

4. Even conditional on distance, the decline in relative shipping costs is around one-third.
9Figure A.3 shows the same figure using data on Class I motor carriers (trucks), starting when these data

become available in 1956.
10This figure uses aggregate data. When I quantify the model, I use data on revenue per ton earned by

each state pair for each sector to show that this relative decline in shipping costs holds up to controlling for
origin-destination fixed effects.

11These new technologies are discussed more in Section 3. Panel (a) of figure B.5 shows the covered
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Figure 2: Railroad Shipping Costs Over Time
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Note: This figure shows revenue per ton earned by Class I railroads in each year, separately for
agricultural goods and manufactured goods. Source: Interstate Commerce Commission’s Freight
Commodity Statistics.

How could these changes in trade costs have caused relative population declines in

the Heartland states? To explore the channels through which these two facts may be

linked, I outline a simple, Armington model of trade between two locations with three

sectors. Labor is mobile across locations, and sectors are connected to each other through

input-output linkages. The mechanics of this simple model are at the heart of most trade

models used in the literature. The key assumption I make is that one location has a com-

parative advantage in the production of agricultural goods and so it relies on imports of

agricultural goods from other regions relatively less than the other location in the model.

I use this model to derive analytic comparative statics describing the response of prices,

production, firm locations, welfare, and population to a decline in the cost of trading

agricultural goods.

The model highlights a key channel through which declines in agricultural goods can

cause a population decline of the heartland: the input-output structure of the economy.

hopper car, which displaced box cars over this period, as shown in panel (b) of the same figure.

5



Agricultural goods are used by other sectors including food processing, textile mills, rub-

ber and plastics industries, and apparel industries, as intermediate inputs (BEA, 1947).

Initially, trade costs gave locations that specialized in the production of agricultural goods

a comparative advantage in certain downstream sectors. But when it becomes relatively

cheaper to acquire agricultural goods outside the heartland, agriculture-intensive loca-

tions’ downstream comparative advantage is weakened and downstream firms move out

of the agriculture-intensive location. Plus, there may be spillover effects from agriculture-

intensive manufacturers to other firms through the input-ouput structure, as well as

through external economies of scale in manufacturing.12

To show that this channel is operating in the data, I take advantage of a natural ex-

periment that affected flour mills in 1963. Studying this natural experiment has a few

key benefits. First, it allows me to narrow in on a single industry for which I have col-

lected location-specific data on prices for goods, plants, firms, and trade in the upstream

and downstream sectors. Most of these data are not systemically available for this time

period for a broader set of industries. Second, it provides a setting with a clear and sig-

nificant change in the cost of shipping the upstream, agricultural good relative to the

downstream, manufactured good, that was caused by an unexpected change in regula-

tion rather than by changes in patterns of demand or supply that may also affect prices

and production patterns.

Before 1963, wheat and flour, which are flour mills’ agricultural input good and final

manufactured good respectively, were equally costly to ship via rail as a result of rail-

road regulation by the Interstate Commerce Commission. Rail car innovations in the late

1950s and early 1960s reduced the railroad cost of shipping bulk products, but regulation

initially prevented railroads from lowering prices accordingly. In 1963, a Supreme Court

ruling allowed railroads to significantly reduce the price of wheat shipments which al-

lowed them to compete more effectively with barges. Other railroads soon followed, and

the result was that the price of shipping wheat fell by about a third while the price of

shipping flour remained the same. I document this fall in the relative cost of shipping

wheat versus flour using an event study design.

12For example, as in the case of Bartelme et al. (2019).
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I then use newly digitized data and two sources of variation generated by the Court’s

ruling to show how this change in shipping costs affected flour prices, production, and

firm locations. To estimate the causal effects of the change in trade costs on outcomes, I

use a differences-in-differences strategy. The first source of variation that I use is varia-

tion across time, before and after the ruling. The second source of variation is variation

across locations, as flour mills that were initially located close to wheat production were

relatively less affected by the change in trade costs since they did not initially rely heavily

on the railroad for wheat shipping.

I find empirical support for the model’s mechanisms using this setting. I find that,

after the ruling, prices of wholesale flour, consumer flour, and bread rose in the Midwest,

which is close to where wheat is produced, as compared with prices in cities and states

farther away from where wheat is produced. Flour milling capacity and the number of

mills fell in areas close to where wheat is produced following the change in shipping rates

relative to areas further away. The relative decline in the number of flour mills in wheat-

producing areas was driven by an exodus of relatively less productive mills. These results

are consistent with the simple model’s comparative statics.

Finally, I document that, consistent with Figure 2, declines in the cost of shipping

agricultural products over this period were not limited only to wheat and instead applied

to a broad set of agricultural products. I quantify these changes in the costs of shipping

agricultural goods between each pair of U.S. states over the postwar period. I then study

the extent to which these observed declines in agricultural shipping costs can explain the

relative population decline of the Heartland over the postwar period.

To do this, I extend the simple model to a multi-sector, multi-location model of trade

between U.S. states a là Caliendo and Parro (2015). To capture the mechanism, the model

includes labor mobility, trade costs that vary by sector, and input-output linkages be-

tween sectors. I include land as a fixed factor of production to correctly model the agri-

cultural sector. I digitize data from 1950 on output and trade in order to calibrate the

model. I then feed into the model only changes to the cost of shipping agricultural prod-

ucts in order to ask how changes in agricultural trade costs changed distribution of pop-

ulation across states over the period. I find that this channel can explain around 8% of the
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postwar population decline in the Heartland. Nearly half a million people would have

remained in the Heartland had the structure of trade costs remained at its 1950 level.

This paper makes several contributions to the literature. First, the paper contributes

to a broad literature in trade about how changes in trade costs affect different locations.

Glaeser and Kohlhase (2004), Fajgelbaum and Redding (2022), Donaldson and Horn-

beck (2016) and Donaldson (2016) among others all use historical settings to study how

changes in trade costs shape the distribution of economic activity across locations within

countries. Recent work by Costinot and Donaldson (2016) studies the gains from market

integration within the U.S. Gollin and Rogerson (2010) study the impact of the trans-

port network on rural to urban migration. Relative to these papers, this paper proposes

and studies a new channel – the changing structure of domestic trade costs – to explain

changes in economic activity across locations.

Second, by proposing and carefully quantifying a new explanation for the decline of

the American Midwest, this paper contributes to a broad literature studying historical

patterns of population and production in the United States. Long and Siu (2018) and

Hornbeck (2012) study how the Dust Bowl contributed to out-migration in some Mid-

western counties in the 1930s. Eckert and Peters (2018) study the spatial implications of

structural change within the U.S. over the past century. Caselli and Coleman II (2001)

study the contribution of structural transformation in explaining the convergence of in-

comes across regions in the U.S. Kim (1995) explores the changing spatial distribution

of manufacturing in the U.S. Alder, Lagakos and Ohanian (2014) study how competitive

pressure affected the postwar, manufacturing-intensive Rust Belt and Autor et al. (2014)

study how exposure to import competition affected manufacturing-intensive locations

since the 1990s. Finally, the particular population patterns I study are documented exten-

sively, though without explanation, by Wilson (2009).

This paper also contributes to a growing body of literature, both theoretical and em-

pirical, on supply chains and trade with input-output linkages. Caliendo and Parro (2015)

and Caliendo et al. (2018) embed input-output linkages into a standard trade, Melitz

(2003) style trade model. Recent theoretical work by Grossman and Helpman (2021),

Antras, Fort and Tintelnot (2022), Antras and Helpman (2004) considers the effects of

8



changes in upstream and downstream trade costs in a world connected by supply chains.

This paper provides novel empirical evidence describing how downstream prices and

production re-allocate in response to changes in upstream trade costs, and how this can

affect population in the long run. While these mechanisms are at the heart of the models

in all of these papers, there is limited evidence that they operate in the data which this

paper provides. Relative to Cox (2021), I show how changes in trade costs allow supply

chains can reallocate population across space.

Finally, this paper relates to work in agricultural economics on the flour milling indus-

try over the postwar period. Kim et al. (2001), Nightingale (1967), Hyslop and Dahl (1964)

and Harwood (1991) discuss the existence of the cost shock and speculate on its potential

implications for the locations of flour mills. Babcock (1976) and Babcock, Cramer and

Nelson (1985) use aggregate data to measure which regions will experience an increase in

flour production in response to the shock. Relative to these papers, I use very granular,

plant-level data on flour mills to credibly quantify the extent to which observed changes

in trade costs affected prices and the locations of mills.

2 Simple Model and Testable Predictions

To explore the channels that link changes in the structure of trade costs with popula-

tion declines, I outline a simple two-state, three-sector model. I use the model to derive

comparative statics which I then test empirically.

2.1 Simple Model

In the initial equilibrium, there are two locations, New York, denoted as N, and Kansas,

denoted as K. There are three sectors: an agricultural sector (“wheat”, W), a manufac-

turing sector (“flour”, F), and an outside manufactured good sector M. I assume that,

initially, N imports more wheat from K than K imports from N, so πW
NN < πW

KK where πW
in

is the share of wheat imported from i by n. This pattern will hold if, for example, K has
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a comparative advantage in the production of wheat as compared with N.13 This pattern

of comparative advantage is the key assumption that will drive the results.

Agents’ Problem. In each location, there is a common component of utility across all

agents in a location, plus an idiosyncratic component of utility associated with each agent.

Agents have quasi-linear utility over a constant elasticity of substitution (CES) aggrega-

tor of flour, plus the outside good. The outside good is homogenous and freely traded.

Because agents have CES utility over flour types from each location, agents love variety;

thus, they want to consume flour from every location since each location is producing

its own variety.14 The elasticity of substitution of flour across origins is σF. Agents in a

location i choose to buy flour from each location cF
ni and the outside manufactured good

from each location cM
ni to solve:

max
cF

ni,c
M
ni

[
∑
n

cM
ni

]
+ ln

[∑
n
(cF

ni)
σF−1

σF

] σF
σF−1


subject to a budget constraint of wi = ∑n pM

ni cM
ni + pF

nic
F
ni. The common component of

indirect utility is then vi = wi + ln
(

σF
σF−1

)
− ln

(
PF

i
)
− σF

σF−1 PF
i .

The total indirect utility of a worker b in state i is vb
i = vi + εb

i where εb
i represents

agent b’s idiosyncratic preferences for location i. Agents choose to live in the state that

gives them the largest indirect utility. Assuming that εb
n ∼ Gumbel yields the share of

agents living in state n:

λi =
exp

(
wi + ln

(
σF

σF−1

)
− ln

(
PF

i
)
− σF

σF−1 PF
n′

)
∑′n exp

(
wn′ + ln

(
σF

σF−1

)
− ln

(
PF

n′
)
− σF

σF−1 PF
n′

)
13Consistent with this assumption, there are strong patterns of comparative advantage in the production

of agricultural goods across states in the U.S., with agricultural exports making up a particularly large share
of the Heartland’s exports. Figure A.2 shows the share of agricultural goods in each state’s export bundle
in 1949. Appendix proof 1 shows one set of parameters – that Kansas is sufficiently more productive in
growing wheat than New York – that is consistent with this assumption.

14This, too, is not divorced from reality. Different regions specialize in different types of flour, often
related to the type of wheat that is locally grown. For example, White Lily flour is generally associated with
the Southern states because it is milled there, and is important in baking biscuits.
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The number of people living in state i is Li = λiL, where L is total population which I

assume to be exogenous.

Production. Wheat is produced using labor, YW
it = TW

it LW
it . The outside good is also

produced using labor, YM
it = TM

it LM
it . Flour is produced using a CES aggregator of wheat,

YF
it = TF

it

[
∑n
(
cW

ni
) σW−1

σW

] σW
σW−1

where σW is the elasticity of wheat across origins.

Prices. I assume that all markets are perfectly competitive and that wheat and flour are

subject to sector-specific iceberg trade costs, τW
in and τF

in respectively. Thus, prices in each

sector are pF
in = τF

in pF
ii and pW

in = τW
in pW

ii where pj
ii is the price of producing goods from

sector j in location i. Since the outside manufactured good is homogenous and freely

traded, it is the numeraire good so its price is 1. Wages in each location will then be set

based on productivity in this sector wn = TM
i and thus are exogenously determined.

Extension with Heterogeneous Firms. While a causal link between declines in agricul-

tural good trade costs and changes in the distribution of population does not require

firms to be present, including firms in the model allows me to derive testable predictions

governing what will happen to firm entry and average productivity of mills in different

locations. The richness of my data will allow me to test these predictions. In this case,

I assume monopolistic competition among flour mills, closely following Chaney (2008)

and Krugman (1980). Each agent chooses cM
ni and cF

ni(ω) where ω ∈ Ω is a flour variety

to solve:

max
cM

ni ,cF
nit(ω)

[
∑
n

cM
ni

]
+ ln

(∑
k

∫
Ωk

(cF
ki(ω))

σF−1
σF dω

) σF
σF−1


s.t. wi = ∑

k

∫
Ωk

pF
ki(ω)cF

ki(ω)dω + ∑
n

pM
ni cM

ni

From this maximization problem, I obtain the quantity demanded of each flour variety

from agents in state i:

cF
ki(ω) =

(
pF

ki(ω)
)−σF

(
PF

i

)σF−1
(1)
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In terms of production, each mill produces its own flour variety ω, though a variety

is unique conditional on a firm’s productivity, which I index as ϕ. Entry and exit of flour

mills in each state are endogenous and depend on a zero profit condition. In each market

there is some endogenously given mass of potential entrants, Mi and some share of them

will end up entering the market. The number of firms operating in any period is then

M∗i = Mi · (1− G(ϕ∗i )) where ϕ∗i is the lowest level of firm productivity for which profits

are non-negative, and G(.) is the distribution of firm productivities, which I will assume

to be Parteo as in Chaney (2008).

The threshold level of productivity above which all firms enter, and below which no

firms will enter, is the productivity for which profits in a market are equal to 0. Profits

made by a firm with productivity ϕ in location i are given by:

πi (ϕ) = ∑
j

cF
ij(ϕ)

τ̃F
ij

σF

σF − 1
PW

i
ϕ︸ ︷︷ ︸

pF
ij(ϕ)

− τ̃F
ij

PW
i
ϕ︸ ︷︷ ︸

MCij

− wi fe

where fe is the fixed cost of entry, denominated in wages, MCij = τ̃F
ij

PW
i
ϕ is the marginal

cost of production for a firm of productivity ϕ in state i to produce flour for state j, and

pF
ij(ϕ) = τ̃F

ij
σF

σF−1
PW

i
ϕ is the price charged by firm ϕ in state i for flour in state j. There is

no fixed cost of exporting; all firms that enter can export without paying an additional

fixed cost. The zero profit condition yields a closed form solution for the cut-off value of

productivity. All firms above this level will enter the market:

ϕ∗Fn =

(
(σF − 1)1−σF σ

σj
F wn fn

(
cF

n
)σF−1

∑i
(
τF

ni
)1−σF QF

i (PF
i )

σF

) 1
σF−1

(2)

2.2 Testable Predictions

I express the model in changes, where x̂ =
xpost
xpre

and consider a decline in the cost of

shipping the agricultural good, τ̂W < 1, while holding all other exogenous variable con-

stant.
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Price effects. When the price of shipping wheat falls, flour prices fall everywhere because

wheat is the only input to flour production and prices are set with perfect competition.

Flour prices fall by more in New York than in Kansas; formally, p̂F
NN < p̂F

KK < 1. I provide

a proof of this result in Theorem 1. This result is driven by the initial pattern of trade,

generated by Kansas’ agricultural comparative advantage, plus the fact that trade within

a state is costless. Because Kansas has a comparative advantage in wheat production,

Kansas is importing relatively less wheat from New York in the initial equilibrium than

New York is importing from Kansas. Thus, a larger share of wheat imports to New York

are affected by the decline in shipping costs, so the price of importing wheat (and thus of

producing flour) falls by more in New York than in Kansas.

A similar logic holds in the case of consumer flour prices: P̂F
N < P̂F

K < 1. Since demand

is CES, agents are buying flour from all locations in the initial equilibrium. But since trade

across states is costly, agents in New York are initially buying relatively more flour from

New York in the initial equilibrium than agents in Kansas are buying from New York.

Thus, flour becomes relatively cheaper for consumers to buy in New York than in Kansas

which I show in Theorem 2. This is how the cost of living changes across locations as a

result of changes in the costs of shipping agricultural goods.

Production effects. Because producer prices fall everywhere, demand for flour rises ev-

erywhere. However, demand rises by more in New York since the price of producing falls

by more there; as a result, the production of flour rises more in New York than in Kansas,

ŶF
N > ŶF

K > 1. The proof of this result is in Theorem 3.

Firm location effects. While my baseline model does not include firms, I turn to the

version of the model with monopolistic competition to generate predictions of the effect

of trade costs on firms. In this version of the model, because it becomes cheaper to pro-

duce flour everywhere and especially so in New York, the productivity threshold for firm

entry falls by more in New York than it falls in Kansas. Thus, more flour milling firms

enter in New York and the total number of firms in New York increases by more as well,
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as compared with Kansas, M̂F
N > M̂F

K. The proof of this result is in Theorem 5.

Productivity effects. Since the productivity entry threshold falls by more in New York,

relatively less productive firms can enter the market there. Thus, the new, lower-productivity

firms drag down the average productivity level in New York, so average productivity ac-

tually falls by more here than in Kansas: ϕ̂∗N < ϕ̂∗K, as per Theorem 4.

Decline of the heartland. Since wages are exogenous in this model, effects on welfare in

this model operate through changes in the cost of living across locations. Since consumer

prices of flour fall by more in New York, welfare increases by more in New York. Since

relative population is linked to relative welfare, relative population thus rises there as

well compared with Kansas. Since Kansas the relatively agriculture-intensive location

here as is the Heartland, this effect is the “decline of the heartland”. The proof of this

result is in Theorem 6.

3 Empirical Case Study

To test whether these model predictions hold in the data, I study the flour milling

industry following a sudden and sharp decline in the railroad cost of shipping wheat

generated by the outcome of a Supreme Court case in 1963.

3.1 Historical Background

Before 1963, railroads charged identical rates for similar movements of flour and wheat

(Babcock (1976), Babcock, Cramer and Nelson (1985), Harwood (1991), Held (1979), USDA

(1964)). This was primarily due to regulation by the Interstate Commerce Commission

(ICC), which, from its inception in 1887 until rail deregulation in 1980, controlled to a

great extent how railroads could set prices. As noted by a 1963 article in the Southwestern

Miller, a trade publication for the flour milling industry, “...the parity between rates of

wheat and flour has long been in effect...” (The Southwestern Miller (1963)).
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However, in the 1960s, new innovations in the shipment of bulk commodities includ-

ing the covered hopper car and the unit train made it cheaper for railroads to ship bulk

grains like wheat as compared with manufactured goods like flour.15 Shipments of flour

were unaffected by these innovations in part because shipments of wheat tend to be in

much larger quantities than shipments of flour; bulk shipments lend themselves well to

both covered hopper cars and unit trains whereas smaller shipments of more processed

goods do not (USDA (1964)). In addition, hygiene requirements are much stricter among

shipments of flour which is a manufactured good as compared with wheat which is a raw

material. This makes flour even more difficult to ship in vast quantities. A 1965 article

in the Minneapolis Tribune quoting a railroad executive explains: “Unit trains for grain

have meant streamlined, high-speed operation– rapid turnaround and high utilization of

equipment that have kept profits up in spite of lower rates... No one has come to us with

any kind of a similar development for flour. Simply, more grain can be moved faster, per

car, than flour”.

The Southern Railroad, one of the first to develop these new technologies, proposed

new, lower rates on wheat to the ICC in 1962. By law, the ICC had seven months to either

approve or deny the rate change. After seven months, no decision was made. In lieu of a

ruling, the reduced rates were supposed to go into effect, but a competing barge company

sued. They claimed the rates could not go into effect until the ICC had made a decision

and that the new rates would “irreparably injure their [the barge company’s] respective

economic interests”. In the meantime, the ICC required the Southern to keep its rates

at the initial level. In 1963, the Supreme Court ruled in Arrow Transportation v. Southern

Railway Company that the ICC didn’t have the authority to prevent proposed rates going

into effect since the decision period had lapsed (United States Court of Appeals (1962)).

Once the Southern was allowed to introduce the new technology and offer lower rates,

other railroads followed. Importantly, this change in railroad rates was not generated

by changes in producer locations or characteristics, and thus is plausibly exogenous to

the outcomes I will study. Many trade publications, newspapers, and economists of the

period took note of changing relative trade costs and speculated on its implications for the

15For example, see figure B.5.
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spatial distribution of the industry. For example, the cost shock was described succinctly

in the 1964 USDA Farm Index (USDA (1964)):

With recent changes in the grain rate structure, it now costs more to ship grain

products, including flour, by rail from some locations than it does raw grain. As a

result, some millers near the city bakeries and retail outlets for flour may have

new transportation advantage over those located nearer the production areas.

Local newspapers reveal how Midwest flour millers felt about the changing rates. An

article published on April 30, 1963 in The Southwestern Miller was titled “Kansas Millers

Plea Against Peril to Trade”, and stated that “the Southern Railway rate cuts would place

Kansas flour at a disadvantage of as much as 43c per cwt in comparison to wheat” (The

Southwestern Miller (1963)). On June 27, 1965, an article entitled “Minneapolis Mills

Fight for Life, Blame Transit Rates” was published in the Minneapolis Tribune (1965). The

article included the following quote, describing how Minneapolis millers feared for their

viability given the advantage that millers closer to population centers would face after

this change in relative shipping costs:16

A growing controversy is raging over the issue of changing transportation

rates which, the [Minneapolis] millers contend, have given Eastern flour mills

an overpowering competitive advantage over the Midwest. They say they’re hurt

because a disparity between transportation rates on wheat and flour makes it

cheaper to ship wheat east for milling and sale in the population centers than

to mill it here and ship the flour to the big Eastern markets. The chief target of

milling industry criticism are railroad freight rates which until recently were about

the same for wheat and flour...

This is shipping rate change that I exploit to study the response of prices and downstream

production locations to a change in the cost of shipping agricultural inputs relative to

manufactured final goods.

16Emphasis is added.
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3.2 Data

Flour mill locations, sizes, flour prices. To identify the changing distribution of flour

mill locations, I digitized records on the locations, sizes, and ownership of U.S. flour mills

from the Northwestern Miller, a trade publication that published an annual directory of all

U.S. flour mills that I obtained from the published, Sosland Publishing. Figure B.3 shows

two examples of what these directory entries look like. Given the address of each mill, I

geocode mills to latitude and longitude coordinates. I then combine the coordinates with

2010 U.S. Census county boundaries to create a panel dataset of counties and years, with

variable including the total number of mills, the total number of mills that belonged to a

multi-unit firm, and the total milling capacity. In addition, I use mill names and addresses

to track plants over time and construct a dataset of mill entry and exit.17

Table A.4 shows annual summary statistics of these data. Some key trends emerge:

over the time period, the total number of mills is falling, but total capacity is rising, so

the average capacity of a mill is rising considerably over the period. The share of flour

produced by the states that are top producers of wheat is also falling, and the share of

mills that are owned by large corporations nearly doubles over the period. One drawback

is that I do not observe actual production of each mill in each year; I only observe the

mill’s capacity which may be a noisy indicator of demand for that mill’s flour since it is

costly to adjust capacity.

I measure producer prices of flour at major markets from The Southwestern Miller, a

trade publication that included averages of flour prices from local mills for a selection of

major milling markets (The Southwestern Miller (1955)). Figure B.4 shows an example

of the price listings for Kansas City. Data were published every week for many differ-

ent varieties of flour. I use data from the last week in October for standard patent flour,

except in the case of Portland, Oregon where the price of standard patent flour is never

listed and instead I use family flour. Table A.5 shows average prices in 1963 and 1966 for

each state in my sample, which I obtain either by using the price listings from a city in

that state, or from averaging over cities (as in the case of Kansas). One drawback of these

17I detail this matching process in B.3.1.
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data is that they are only available for a small number of cities; in total, only ten states are

represented. I measure the retail prices of flour and bread in a selection of different cities

from the Bureau of Labor Statistics’ Retail Prices in U.S. Cities.

Wheat Production and Prices. I obtain county-level data on wheat production and wheat

yields from the United States Department of Agriculture (USDA) and the Census of Agri-

culture. 63% of wheat production in 1963 was produced in Midwestern states; 71% was

produced by Midwestern states plus Montana and Idaho (USDA, 1963).

Transportation Network. I measure transport costs for agricultural products in 1950

among all pairs of counties. To using a map of the 1957 railroad network drawn by the

Army Service Corps of Engineers that I have digitized.18 To measure the cost of shipping

agricultural products one ton-mile along this network, I use the reported revenue per ton-

mile earned by Class I railroads in 1950 for Products of Agriculture (ICC, 1950).

Railroad Trade. I obtain data on railroad trade of wheat and flour between U.S. states and

major regions from the Carload Waybill Sample Statistics. These data are a 1% sample of

all terminated waybills, which are contracts between railroad companies and producers.

Each observation in the data is of a commodity traded in a given year between an origin

state or region and a destination state or region, and the data include the volume of goods

traded as well as the revenue earned by the railroad on shipments along that route in that

year. I have digitized state level data are available from 1958 through 1966. Region level

data for five major regions in the U.S. are much coarser but are available for more years,

1950 through 1987, with some gaps.

18The original map is shown in Appendix Figure B.2.
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3.3 Effects on Trade Costs

3.3.1 Empirical Strategy

I first quantify the extent to which the court’s ruling affected the relative cost of ship-

ping wheat versus flour. To do this, I use railroad trade data at the route-commodity-year

level to estimate the following event study:

ln
(

revenueodct
tonodct

)
= ∑y 6=1963 βy · 1(t = y) · 1(c = wheat) + γodc + γodt + γot + γdt + εodct (3)

where o is an origin region, d is destination region, and c ∈ (wheat, flour) is a commod-

ity. Standard errors are clustered at the route level, of which there are 25. revenueodct

measures total payments from producers to railroad shippers for goods of commodity

group c shipped along route od in year t. tonsodct measures total tons of commodity c

shipped by railroad companies in year t from o to d. Each event study coefficient βy mea-

sures the relative cost of shipping wheat versus flour in year y relative to 1963, which is

the last untreated year.

I attribute my estimates of βy to the causal effect of the Supreme Court ruling. I as-

sume that, had the ruling in 1963 not happened, the cost of shipping wheat relative to the

cost of shipping flour would have remained constant over this period. I include various

fixed effects control for factors other than the court’s ruling that may influence the cost

of shipping wheat relative to that of shipping flour. For example, changes in the com-

positional quality of wheat or flour being shipped, which would affect its value, could

also affect the relative revenue per ton earned by the railroads. Assuming this effect is

constant across routes, commodity-time fixed effects control for any such compositional

changes. Similarly, origin-destination-commodity fixed effects control for any route and

commodity-specific differences in the cost of shipping that do not vary over time. I also

include origin-time and destination-time fixed effects.
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3.3.2 Results

Figure 3 shows event study estimates of equation 3. While the cost of shipping wheat

was not statistically different than the cost of shipping flour in 1961 and 1962, as these

point estimates are small and not statistically different from zero, there is considerable

wedge between the trade costs for the two commodities by 1966: the cost of shipping

wheat has fallen by about 30% relative to the cost of shipping flour. This significant and

sudden shift in shipping costs provides the ideal scenario to study how declines in agri-

cultural good trade costs affect production across locations. Finally, I separately estimate

Figure 3: Effects of the Ruling on Shipping Costs
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Note: This figure shows event study estimates of equation 3, in which I compare the revenue per
ton earned by railroads, a measure of shipping costs, in shipping wheat versus flour each year,
relative to the year of the Court’s ruling.

equation 3 by commodity. Consistent with the story, the decline in relative trade costs

is driven by a decline in the cost of shipping wheat, while the cost of shipping flour re-

mained unchanged.

3.4 Effects on prices, production, firms

How did flour prices, flour production, and flour mill locations evolve after this change

in shipping costs? Figure 4 shows the relationship between initial proximity to wheat and
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flour mill locations. Each county is colored based on its wheat market access which is the

inverse distance-weighted average of wheat production in all surrounding counties.19

Dark orange and red counties are closer to wheat-producing locations; Each black dot

represents a county with at least one flour mill in the indicated year; dots are sized by the

number of mills in that county. Comparing 1961 (the top panel, corresponding to the last

pre-shock year for which I have data) to 1975 and 1985, many (but not all) of the mills

in North Dakota, Montana, and Kansas have closed. Many new mills are instead closer

to population centers including New York Cities, New Orleans, Tampa, and Jacksonville.

While these maps are suggestive, I estimate difference-in-differences models to quantify

the effects.

3.4.1 Empirical Strategy

To estimate the causal effects of changes in agricultural shipping costs on outcomes,

I take advantage of two sources of variation. First, I take advantage of variation across

time induced by the Supreme Court ruling, comparing outcomes before and after 1963.

Second, I take advantage of variation across locations. Places close to where wheat is pro-

duced initially relied less on the railroad for shipping wheat than places far from where

wheat is produced. For example, a flour mill in New York is far from wheat production

and thus must import wheat from the Midwest while a mill in Kansas is close to wheat

production and instead exports finished flour, rather than importing wheat.

Effects on prices. I first measure how prices of flour and bread evolved differently in

the Midwest, where wheat is produced, versus in other places. I use a differences-in-

differences specification. My estimating equation is:

log (priceit) =
T

∑
y 6=1963

βy · 1(y = t) · 1(i ∈ Midwest) + γt + γi + εit (4)

where i is a city and t is a year. The identifying assumption is that, in lieu of changes in

trade costs, prices would have evolved in the same way in locations within the Midwest

19This measure is defined formally in Equation 5.
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as compared with locations outside the Midwest.

Each event study coefficient βy measures the difference in prices in the Midwest in

year y relative to 1963, versus outside the Midwest. If the predictions of Section 2 hold,

then we would expect to prices to fall by more outside the Midwest (or, in other words,

rise in the Midwest relative to other locations), so βy > 0 for y > 1963. There should be

no difference in the evolution of prices in the Midwest versus in other locations, in which

case βy = 0 for y > 1963.

Effects on production and firms. When looking at production and mill locations, I have

data for every county, instead of for a selection of cities as in the case of price data. This

allows me to construct a continuous measure of exposure to the change in wheat shipping

costs. I measure each location’s “wheat market access” WMAi,1959 before the shock:

WMAi,1959 = ∑
n
(τW

ni )
1−σW ·YW

n,1959 (5)

where YW
n,1959 is production of wheat in bushels in 1959 and τW

ni is the iceberg cost of

shipping wheat from n to i. σW determines the distance decay; I estimate this parameter

to be 13.7 using trade data as described in Section 4. My main empirical specification is:

yit =
T

∑
y 6=1961

βy · 1(y = t) · log(WMAi,1963) + γt + γi + εit (6)

where i is a location, which will be either a county or a city, and t is a year.20 The first

difference is the difference between the pre-1963 and post-1963 periods while the second

difference is that between counties that are relatively better or worse producers of wheat.

My coefficients of interest are each βy. I omit the last pre-treatment year for which I

observe data (1961), so each estimated coefficient is relative to the 1961 level. Standard

errors are clustered at the county-level, of which there are around 3,000.

Similarly to the price regressions, my identifying assumption is that, in lieu of changes

20In robustness checks, I estimate the differences-in-differences version of this specification, which is:
yit = β · 1(t > 1963) · log(WMAi,1963) + γt + γi + εit.
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in trade costs (i.e., if the Supreme Court had ruled in favor of Arrow Transportation Co.

and the new rates had not gone into effect), flour prices, mill locations, and production

would have evolved similarly across locations regardless of that location’s initial special-

ization in wheat production. The event study nature of these regressions allows me to

test, to some extent, this assumption. If this assumption holds, then we would expect

there to be no difference in outcomes across locations prior to the change in trade costs

after controlling for year and location fixed effects. In later sections, I will also include a

series of robustness checks to control for alternative explanations of my results.

3.4.2 Results

Prices. Figure 5 plots event study estimates of equation 4. In panel (a), the outcome

variable of interest is log(pF
ii), the log of the producer price of flour. I find that the pro-

ducer price of flour rises in the Midwest compared to other locations by about 3% in the

first year following the decline in trade costs. Three years later, the price remains about

7% higher in the Midwest relative to the rest of the country, even though there were no

differential trends in flour prices between the Midwest and the rest of the country prior

to 1963. In panel (b), the outcome variable of interest is log(PF
i ), the log of the consumer

price of flour. Here, I find a similar result as in the case of producer prices: by 1965, two

years after the change in trade costs, consumer prices of flour have risen by about 6% and

remain at that lower level for the decade. Panel (c) looks at bread prices and finds an

effect of around 10%.21

Production. Figure 6 plots event study estimates of equation 6. In Panel (a), the outcome

variable is the number of mills in each county in each year. I omit the year 1961, which

is the last year for which I observe data before the 1963 ruling.22 To get a sense of the

magnitudes, consider that in 1961, the average county had 0.17 flour mills. The estimated

coefficient for 1975 is around −0.01. Thus, moving from a 25th percentile wheat access

21Bread pricing reflects the price of flour sold to bakers, which may be priced differently than flour sold
in grocery stores.

22While I use OLS here, I use Poisson and Logit (with an indicator for whether there is a least one mill)
models in robustness checks.
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Figure 4: Flour Mill Locations and Capacity

(a) 1961

(b) 1975

(c) 1985

Note: Each black dot represents the centroid of a county with at least one flour mill in the indicated year, with the size of the centroid scaled by the number of mills in that county.
The background shading represent access to wheat in 1959, as measured by wheat market access in equation 5, with shades tending towards red representing areas closer to
wheat production areas. Source: The Northwestern Miller, Army Map Service Map of U.S. Railroads (1957), and the Census of Agriculture (1959).
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location (far from wheat) to a 75th percentile wheat access location (close to wheat), which

is a difference of about five log points, is associated with a decline of−0.05 mills, or about

30% of the mean.

In Panel (b), I look at the total capacity of mills. Because there are many zeros, I use

an inverse hyperbolic sine transformation which allows me to preserve the zeros. The

pattern of changes in capacity following 1961 is almost the same as in the case of the

number of mills. By 1975, flour milling capacity is about 20% lower when moving from

a location with a 25th percentile wheat access location to a 75th percentile wheat access

location. In Panel (c), I look at the log of the average mill size where mill size is milling

capacity in a county divided by the number of mills in that county. There appears to be

no differential change in mill size by location, suggesting that changes in milling capacity

are driven by changes in the number of mils, not by changes in mill sizes.

In Figure 7, I look at outcomes related to the firms version of the model. While I do not

directly observe firm productivity, I estimate how the changes in trade costs differently

affected plants that were initially part of multi-unit firms versus those that were initially

stand-alone plants. For example, all of General Mills’ plants would be considered as part

of a multi-unit firm. I separately estimate the event study for single-unit plants and multi-

unit plants, or plants that are part of larger firms. I find that the effect on the number of

firms is completely driven by a decline in the number of single-unit plants in initially

wheat-intensive locations.

Robustness. I consider some alternative explanations for these results, and address each

in turn. Tables A.1 and A.2 show these robustness checks for the number of mills out-

come variable and the flour milling capacity outcome variable respectively. Column (1)

shows the baseline difference-in-differences estimate corresponding to the event study

regressions in equation 6 and I add additional controls in each subsequent column.

To control for state-level policies that may have changed across years, for example, any

tax policies that may have incentivized firms to locate in a certain state, I include state by

year fixed effects in Column (2). Another concern is that technology was increasing the

returns in scale; in fact, the average size of mills grew considerably over this period (see
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Figure 5: Effects of Shipping Cost Changes on Flour and Bread Prices

(a) Flour producer prices
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(b) Flour consumer prices
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(c) Bread consumer prices
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Note: These figures show event study estimates of equation 6. Each point estimate is the relative difference
each year in prices in Midwestern cities relative to non-Midwestern cities.

Table A.4). This could vary across counties depending on the initial distribution of mills:

for example, a county with smaller mills initially may see a relative decline in the number

of mills not due to changes in trade costs, but due to the changing returns to operating a

large mill. To account for this, column (3) adds county by year linear time trends to the

baseline specification.

An additional explanation of these patterns is that because mills were becoming larger,

they required more labor, and thus moved closer to cities where labor may have been

more easily available. While the labor share of flour milling output is small, making this

story unlikely, I include dummy variables for each year interacted with a county’s initial

population, thus allowing the impact of population on the location of mills to vary over
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Figure 6: Effects of Shipping Cost Changes on Flour Mills

(a) Number of mills
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(b) sinh−1 (Flour milling capacity)
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(c) log(size)
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Note: These figures show event study estimates of equation 6. Each point estimate is the relative difference
each year in the outcome variable, based on a location’s initial access to wheat production.

time in Column (4).23

Another possibility is that demand for U.S. flour is increasing from the rest of the

world, in which case it may be becoming increasingly attractive for flour mills to locate

near coasts and ports. Since the coasts are far from where wheat is grown, wheat-intensive

areas locations would become relatively less attractive. To control for this possibility, I

introduce dummy variables for each year interacted with the distance of that county to

the coast of the U.S. an additional covariates into my main regression. This allows the

impact of being close to a port to vary by year, as the level effect of a county’s proximity

23In 1947, Flour and meal products’ wage and salary share of total output was 4.7% (Census of Manufac-
turers).
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Figure 7: Effects of Shipping Cost Changes on Multi- & Single-Unit Mills
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Note: This figure show event study estimates of equation 6 where the outcome is either the number of mills
that are were part of multi-unit plants (in red) and the number of mills that are part of single-unit plants
(in blue) in the last year before the change in trade costs, or in their year of entry, whichever is earlier.

to the port will be absorbed by the county fixed effect. These results are in column (5).

Finally, I consider some additional measures of initial proximity to wheat. I use the

Global Agro-Ecological Zones data to measure the potential wheat yield in each location,

given the climate and soil conditions. In this case, I simply replace the quantity of wheat

production in equation 5 with the potential yield. I do the same using the wheat yield

in each county, where yield is computed as the ratio of wheat bushels harvested to the

wheat acreage planted based on the Census of Agriculture.

I also consider robustness to the functional form choice of my empirical specification.

My main results are OLS estimates. In the case of the number of mills, the outcome

variable is a count variable. However, the vast majority (98%) of county-year observations

have either zero or one mill. Thus, my regression in this case is, in practice, nearly a linear

probability model. I consider both Poisson models, a linear probability model, and a logit

model. Table A.3 shows these estimates for both the number of mills and the wheat flour

capacity.
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4 Quantification

How important were these trade cost changes in shaping the distribution of the U.S.

population? This section outlines and calibrates a full, quantitative model of intrana-

tional trade, which I use to asses the extent to which declining agricultural trade costs

can explain the population decline of the heartland states over this period. Relative to

the simple model, this full model has two key advantages. The first advantage is that it

allows me to quantify the importance of changes in trade costs in shaping the distribution

of population in the U.S. over the period. The second advantage is that it relaxes assump-

tions I made in the simple model and allows for endogenous changes in wages and rental

rates.

The model set up closely follows Caliendo and Parro (2015) and Caliendo et al. (2018),

and includes a few key ingredients required to capture the mechanism. First, there are

input-output linkages across sectors. Second, labor is mobile across states. Third, trade

costs vary by sector. Finally, to appropriately model the agricultural sector, land is an

input to production.

4.1 Model Setup

Agents’ problem. In each location n, a representative agent chooses consumption of

goods Cj
n from each sector j to maximize their utility subject to a budget constraint:

max u(Cn) = ΠK
k=1

(
Ck

n

)αk
n

where
K

∑
k=1

α
j
n = 1 subject to In = ∑

j=1
Pj

nCj
n

where In = wn + rn`n/Ln + Dn is per-capita income in location n and αk
n is the share of

total income spent on products in sector k. wn is the wage in location n, rn is the rental

rate of land in n, `n is the endowment of land in n, and Dn is the trade deficit which will

be defined later.

This problem yields demand functions of Ck
n = αk

n In
Pk

n
and an indirect utility function:

vn = InΠK
k=1

(
αk

n
Pk

n

)αk
n
. vn is the common component of utility of agents living in a location
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n. In addition, there is an idiosyncratic component of utility, such that indirect utility of

a worker b living in location n is given by vb
n = vn + εb

n, where εb
n ∼ Gumbell(0, ε), as in

Eckert and Peters (2018). From this, I derive the share of agents living in each location

n as λn = exp(ε·vn)

∑n′ exp(ε·vn′)
. The population of each location is given by Ln = λnL. Labor

and land are both freely mobile across sectors within a location and not subject to any

frictions; hence, there will only be a single wage and rental rate in each location.

Intermediate goods. A continuum of intermediate goods ω j ∈ [0, 1] is produced in each

sector j. A firm producing good ω j in sector j in location n combines land, labor and

materials via a Cobb-Douglas production function:

qj
n(ω

j) = zj
n(ω

j)

((
l j
n(ω

j)
)1−δ

j
n
(

Lj
n(ω

j)
)δ

j
n

)γ
j
n K

∏
p

(
mp,j

n (ω j)
)γ

p,j
n

(7)

where l j
n(ω

j) is land, Lj
n(ω

j) is labor, mp,j
n (ω j) are composite intermediate goods from

sector p used in the production of intermediate good ω j. γ
j
n is the share of value added

in total output for sector j. γ
p,j
n is the share of sector j total output in location n that comes

from sector p such that ∑K
p=1 γ

p,j
n = 1− γ

j
n. Given this production function, the unit cost

of goods from sector k in location n is pj
n(ω

j) = cj
n/zj

n(ω
j) where:

cj
n = Γj

n · (w1−δ
j
n

n rδ
j
n

n )γ
j
n

K

∏
p=1

(
Pp

n
)γ

p,j
n

where Γj
n = γ

j
n

((
(δ

j
n)
−δ

j
n · (1− δ

j
n)

δ
j
n−1
))−γ

j
n
·∏K

p
(
γp,j)−γp,j

. The productivity of each

intermediate good producer zj
n(ω

j) is distributed Frechet with location parameter T j
n and

shape parameter θ j.

Composite goods. Following Caliendo and Parro (2015), composite good producers in

each sector purchase intermediate goods from each firm producing varieties ωk within

that sector. They substitute across goods within a sector with elasticity of substitution σk
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to bundle goods into Qk
n.

Qk
n =

[∫
rk

n(ω
k)1−1/σk dω j

]σk/(σk−1)

(8)

where rk
n(ω

k) is the demand of intermediate goods ωk from the lowest cost supplier across

all possible origins. These composite goods are then used as materials or as final con-

sumption. Composite good producers have the following demand for good ωk:

rk
n(ω

k) =

(
pk

n(ω
k)

Pk
n

)−σk

Qk
n (9)

where Pk
n is the unit price of the composite intermediate good:

Pk
n =

[∫
pk

n(ω
k)1−σk dωk

] 1
1−σk

=

[
∑

i
Tk

i

(
ck

i τk
in

)−θk

] 1
−θk

(10)

where the second equality follows since the price realized for each good in each sector

is the lowest price available from all locations: pk
n(ω

k) = mini

[
ck

i τ
j
in

zk
i (ω

k)

]
where τ

j
in is the

amount of a good from sector j shipped from i to n that must be shipped for one unit to

arrive. Total expenditure on sector j goods in n is given by X j
n = Pj

nQj
n.

Trade. Trade flows along a route in in sector j are defined as X j
ni = π

j
ni · X

j
n, where:

π
j
in =

T j
i

(
cj

iτ
j
in

)−θ j

∑m T j
m

(
cj

mτ
j
mn

)−θ j (11)

Goods market clearing. Total spending on goods from a sector j in a location n must

be the total amount spent on final good consumption, plus demand for goods from that

sector for all firms in that location for use as intermediate goods:

X j
n = α

j
n In + ∑

k
γ

j,k
n Yk

n (12)
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Land & labor market clearing. Land used in production equals land available in each

location, ∑j l j
n = ln. Labor supply equals labor demand everywhere, Ln = ∑j Lj

n.

Trade imbalances. Since there are significant imbalances in trade between U.S. states, I

allow for such imbalances in the model. The trade deficit for each states is total imports,

minus total exports:

Dn = ∑
j

∑
i

X j
ni −∑

j
∑

i
X j

in

4.2 Calibration

To calibrate the model, I express all variables in changes where x̂ = x′/x.24 The model

has N = 48 locations, representing each of the contiguous U.S. states, and J = 24 sectors.

These sectors, which include 16 manufacturing sectors, 6 non-tradable sectors, and 2 raw

material sectors. This set of sectors was chosen based on data availability.25 The initial

period of the model is set to 1950 and the post period is 1980.

4.2.1 Trade, Production, and Parameters

Trade. In the model, outcomes critically depend on trade patterns between states in the

initial equilibrium. To measure these patterns, I use data on railroad trade between each

pair of states for each sector from the Carload Waybill Sample Statistics in 1949. I created

a crosswalk to match CWSS sectors, which use an old style of commodity classifications,

to the modern commodity groupings used in my model based on the descriptions of

each.26 CWSS commodity classifications are fairly disaggregated relative to the model’s

24Appendix C.4 lists the set of equations that characterize the equilibrium of the model in changes.
25The sectors are: Food or kindred products and tobacco; Textille mill products; Apparel, leather, fin-

ished textile products; Lumber or wood products; Furniture or fixture; Pulp, paper, or allied products;
Chemical or allied products; Petroleum or coal products; Rubber or plastics products; Clay, concrete, glass,
or stone products; Primary metal products; Fabricated metal products; Machinery, excluding electrical;
Electrical machinery, equipment, supplies; Transportation equipment; Miscellaneous products or manu-
facturing; Construction, wholesale and retail trade; Finance, insurance, real estate; Transportation, com-
munications, utilities; Arts, recreation, accommodation, repair; Education, legal, health; Other services;
Agriculture products; Mining products.

26This is trivial the case of agricultural goods and mining products, as trade is reported for these aggre-
gate categories. However, I need to separately observe trade patterns for each manufactured good sector to
calibrate the model.
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sector categories: for example, CWSS sectors include “soap compounds” (mapped to the

chemical products sector) and “sugar” (mapped to food and kindred products sector).

There are two main challenges with this dataset. First, many origin-destination-sector

pairs don’t appear in the data, suggesting zero trade flows. Some fraction of these zeros

may not be “true zeros”; instead there may be small amounts of trade that are not cap-

tured in the 1% sample. In fact, some states that are listed in the Census of Manufacturers

as producing goods from a given sector may appear as in the trade data as not producing

any goods from that sector. Using this raw data would thus introduce considerable noise

into my calibration. The second challenge is that I do not observe value shipped; instead,

I observe revenue earned and tons shipped along each route. As a result, I cannot directly

compute the value of trade between each location for each sector.

To address both of these issues, I measure gross output by sector and state from other

sources, as I describe below. I then use the trade data to measure the share of exports from

each origin state that are shipped to each destination. To address the sampling issue, I do

not use the raw data. Instead, I use a Poisson model to estimate the share exported from

each origin to each destination. I estimate, separately by sector:

λ
j
in = γ

j
i · exp

(
β0 + β1 · log(distancein) + ∑

l
βl · Xl

in

)

where λ
j
in is the share of sector j goods produced in i exported to n. distancein is the

railroad distance between i and n and Xl
in is the lth covariate. I then use these estimated

coefficients to compute predicted export shares. The Poisson model is consistent with the

model: it will never predict that there will be zero trade flows between two locations.

I use the predicted export shares in my calibration. Observing export shares, predicted

from the trade data, and the total value of exports for each state and sector allows me to

compute the total value shipped between each pair of locations for each sector.

In addition to distance, I use a number of different covariates to predict export flows.

I use an indicator for whether that observation corresponds to a state shipping to itself,

1(i = n). I use an indicator for whether the destination is a coastal state, and for whether

the origin and destination are both coastal states. Finally, to capture the size of the market
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in the destination state, I use demand for goods from that sector in the destination n.

Figure A.5b shows the correlation between the estimated export shares and the export

shares that I observe in the data. Figure A.5a shows the relationship between that share

of total imports that each state imports from itself and that state’s initial specialization in

agriculture, in both the model and the data. Importantly, import shares match this pattern

of specialization: states that specialize in agricultural production import relatively larger

shares of agricultural goods from themselves.

Gross output, value added, land shares, IO linkages. I measure input-output linkages

across all sectors γk,j as well as each manufacturing sector’s share of value added in total

output γj from the Bureau of Economic Analysis Input-Output table in 1950.27 To mea-

sure gross output for each location and sector Y j
i , I rely on a number of different sources.

First, I digitize state-level data on value added by each manufacturing sector from the

Census of Manufacturers (CMF, 1947).28 When a sector has a small presence in a state,

value added is not be separately reported for that sector in that state. Instead, all remain-

ing value added is reported in a single category (“All other major industry groups”).

I allocate this remaining amount to the remaining sectors that are not separately listed

based on the employment share of each omitted sector in the total employment of all un-

listed sectors.29 I then use each sector’s value added share of output from the BEA I-O

table to convert value added, measured from the CMF, to gross output: Y j
i =

VAj
i

γj for every

manufactured sector.. I also use the CMF to measure each state’s share of manufacturing

wages in manufacturing value added and assume that δ
j
n = δn for every manufactured

sector.

27These values are not disaggregated by state, so I assume that γ
j
n for manufacturing sectors and γ

k,j
n =

γk,j for all sectors.
28Ideally, I would measure gross output as the total value of shipments. However, the total value of

shipments is not reported at the two-digit sector level for each state. There were concerns about double
counting shipments between firms within the same two-digit category. While the total value of shipments
is reported at the four digit industry code, using these figures would require the digitization of many
hundreds of additional figures.

29Given this assumption the only state-sector pairs with zero gross output are those with zero value
added and zero employment. Because this requires granular data on employment by sector, I rely on the
1940 U.S. Census which is available for all sectors instead of the 1950 U.S. Census which has not been fully
released yet.
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For the agricultural sector, I measure value added and gross output (total value of

agricultural production) in 1949 by state from the USDA’s Economic Research Service

report on value added. I measure the agricultural value added share as γ
Ag
n = VAAg

n /YAg
n .

It is very high on average, around 75%, ranging from around 45-50% in Delaware and

New Hampshire to above 95% in North Carolina and North Dakota.30 I measure the

share of wages in value added δ
j
n by dividing the total amount spent on hired labor and

employee compensation by total value added for each state. I measure value added,

gross output, and wage payments for the mining sector from the 1954 Census of Mineral

Industries. The average value added share of output is also quite high, around 75%,

ranging from 52% (Nevada) to 88% (California).

I measure non-tradable gross output using a combination of two data sources. First, I

measure national gross output for each non tradable sector from the BEA IO table. I then

measure the share of output in each sector that is produced in each state based on each

state’s share of national employment in that sector, and use that to compute total output

in each state for each tradable sector. I impose that γ
j
n = 1, δ

j
n = 1∀j ∈ NT.

The data and methodology described above allow me to measure total gross output for

each state and sector; however, because my model is a closed economy, I need to measure

output in each state and tradable sector destined for domestic use. I adjust for the amount

of gross output that each state and sector exports abroad by using the U.S. Department of

Commerce 1966 “State Export Origin Series”. It reports, for each state and manufacturing

sector, total exports and total gross production in 1966. I use this to compute the share of

production that is exported, and subtract this amount from gross output. Data are also

provided for each state for agricultural products. For mining, there is no state-specific

data, so I measure the aggregate percent of mining product shipments that are exported

(5%) from U.S. Department of Commerce 1958 report on “U.S. Commodity Exports and

Imports as Related to Output”.31

30Most of the intermediate inputs used in agricultural sector are from the agricultural sector, and in-
clude feed purchases, seed purchases, livestock purchase, plus a small amount of manufactured inputs like
electricity, fertilizer, fuel, and pesticides (USDA).

31Both of these reports are “one-off” and exist only for the years listed here; I assume that export patterns
were similar over the 1950-1966 period.
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Productivity dispersion. I measure the dispersion of productivity within each sector

θj from the trade data and equation 11. I assume that trade costs take the form τ
j
od =

raildistκ
od · X where X is a constant.32 Using Poisson to handle the large quantity of zeros

in the raw trade data, I estimate:

π
j
in = γ

j
i · γ

j
n · exp

(
βj · log(raildistin) + ε

j
in

)
(13)

where βj = κ · θ j and raildistij is the railroad distance in miles between i and j as com-

puted using the 1957 railroad network. I measure κ, the elasticity of trade costs with

respect to distance, as κ = 0.169 from Donaldson (2016). Table 1 shows estimates of θ j

for each sector. The median value is 8.3, which falls well within the range of conven-

tional estimates.33 Precisely estimated values range from 2.91 (electrical machinery) to

18.5 (miscellaneous products).34 I assign the median value of 8.3 as the elasticities for the

non-tradable sectors.

Final Consumption Shares. Following Caliendo and Parro (2015), I solve for each sec-

tor’s share in final consumption in each state, α
j
n to satisfy the goods market clearing

condition in equation 12 in the initial equilibrium. Figure A.4a shows the median expen-

diture share across states for each sector.

Other Parameters. I measure total employment and the share of workers in each state

and state from the 1950 U.S. Census. I measure the land area of each state landn from

the Census of Agriculture. I compute the initial rental rate on land as rn =
∑j Y j

nγ
j
n(1−δ

j
n)

`n
.

Similarly, wages are wn =
∑j Y j

nγ
j
nδ

j
n

Ln
. Finally, the elasticity of mobility across locations

is critical to determining how population will change across places. I set ε = 2.38, as

estimated in the context of the historical United States by Eckert and Peters (2018).

32This constant will not affect the estimation of each θj here, but will become important later on.
33For example, Eaton and Kortum (2002) also estimate a value of around 8.
34Estimates for textile mill products and apparel are very small and nosily measured. In my calibration,

I assign the median value of θ j to these sectors.
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Table 1: Estimates of Trade Elasticities

Sector θ̂ j

Food or kindred products and tobacco 7.48(0.45)∗∗∗

Textille mill products 0.52(1.45)
Apparel, leather, finished textile products 0.97(1.55)
Lumber or wood products 9.93(0.54)∗∗∗

Furniture or fixtures 6.35(0.60)∗∗∗

Pulp, paper, or allied products 7.87(0.53)∗∗∗

Chemical or allied products 9.30(0.64)∗∗∗

Petroleum or coal products 18.58(0.62)∗∗∗

Rubber or plastics products 4.30(1.09)∗∗∗

Clay, concrete, glass, or stone products 19.31(0.63)∗∗∗

Primary metal products 4.62(1.76)∗∗∗

Fabricated metal products 11.18(0.49)∗∗∗

Machinery, excluding electrical 4.38(0.55)∗∗∗

Electrical machinery, equipment, supplies 2.91(1.13)∗∗∗

Transportation equipment 8.73(0.73)∗∗∗

Miscellaneous products or manufacturing 18.50(1.11)∗∗∗

Agriculture products 13.78(0.47)∗∗∗

Mining products 16.86(0.54)∗∗∗

Median 8.30

Note: This table shows estimates of θ̂ j from estimating equation 13 with Carload Waybill Sample
Statistics data, and railroad distances measured from the 1957 rail network. I set δ = 0.169 from
Donaldson (2016), and report θ̂ j = −β̂j/η.

4.2.2 Quantifying changes in trade costs

The key inputs to the model are bilateral changes in agricultural trade costs. To mea-

sure these, I first measure agricultural trade costs between states in the initial equilibrium.

I assume that trade costs between each pair of locations are given by τ
Ag
in = raildistκ

in · X

where raildistin is the railroad distance between locations i and n, and X is a constant. I

solve for the constant, X, using data on revenue earned, tons shipped, railroad distance,

and costs of goods at the origin, as described in Section C.4.3.

Then, I estimate changes in trade costs by collecting data on revenue per ton mile

earned by railroads across each pair of states for agricultural goods and manufactured

goods in 1988, which is the first year of bilateral, state-to-state railroad trade data that is

available after 1966. I estimate:

∆1949−1988 log
(

revenueodc
tonsodc

)
= γod + β1 · 1(c ∈ Ag Good) + εodc (14)

Results of estimating equation 14 are in Table 2. In column (1), all observations are
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weighted equally; in column (2), I weight observations by the log of the tonnage of that

commodity shipped along that route in 1949. I find that overall, revenue per ton earned

on agricultural products fell by roughly 33% (unweighted) to 37% (weighted). I use these

Table 2: Changes in Agricultural Shipping Costs, 1949-1988

∆ log(revenue per ton)

(1) (2)

1(c∈ agricultural) -0.329∗∗∗ -0.367∗∗∗

(0.0438) (0.0426)

N 1600 1600
Weighted No Yes
FE Route Route

Note: This table shows estimates of equation 14 using data from the 1949 and 1988 Carload Waybill Sample
Statistics. Column (1) shows unweighted estimates; in column (2), I weight observations by the volume of
trade along the route in 1949. Bulk agricultural goods include soybeans, wheat, corn, sorghum, oats,
barley and rye, and rice. Standard errors clustered at the route level are reported in parentheses.

differences-in-differences point estimates to estimate the average change in revenue per

ton earned along each location:

ˆ̃τAg
in =

1 + 0.63 · τAg
in,1950

1 + τ
Ag
in,1950

(15)

Figure A.6 shows ˆ̃τAg
in for each pair of states. I assume that there are no changes in trade

costs for shipments within states.35

4.3 Results

Changes in population. I use the model to compute the change in each state’s share of the

U.S. population given these declines in the costs of shipping agricultural goods. Figure

8 shows resulting the distribution of changes in population across states. To measure the

35In a robustness check, I measure within-state trade costs based on the average distance between each
pair of counties within the state and allow such changes to occur, based on equation 15. However, there
is limited data to measure the extent to which trade between states occurs via rail; as these are shorter
distances, goods may be more likely to be transported via trucks. Thus, this case in which I assume no
changes in trade costs within states, is the most conservative choice.
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extent to which the model can explain the observed population decline of the heartland,

I construct the model and data implied change in the heartland’s share of population

between 1950 and 1980:

ŝv =
∑n 1(n ∈ heartland) · l̂v

n · ln
∑ l̂v

n · ln︸ ︷︷ ︸
Heartland’s share in 1980

/
∑n 1(n ∈ heartland) · ln

∑ ln︸ ︷︷ ︸
Heartland’s share in 1950

(16)

for v ∈ (model, data) where ln is the population state n in 1950 as measured in the data

and l̂v
n is the change in state n’s population in either the model or data. To compute the

percentage of ŝdata that can be explained by the model, I construct ŝmodel

ŝdata · 100. I find that

the observed decline in trade costs for agricultural products can explain around 8% of

population declines in the heartland.

Figure 8: Estimated Population Changes Across States

Note: This figure shows model-predicted changes in relative population in each state,
corresponding to the baseline parameterization of the model.

Consistent with the intuition of the simple model, the mechanism operates by reduc-

ing population in locations that initially specialized in agriculture. Figure 9 shows the

relationship between each state’s initial specialization in agriculture, as measured by the
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percentage of employment in agriculture in 1950, and the log of the change in relative

population between 1950 and 1980.36 Panel (a) shows the relationship in the data and

panel (b) shows the relationship as generated by the model. In both, there is a negative

relationship between initial agriculture specialization and the change in relative popula-

tion, with the most agriculture-intensive locations losing relatively more people.

In the data, the relationship is only marginally significant overall as some locations

that are initially moderately intensive in agriculture, such as Florida, Arizona, and Nevada,

saw large increases in relative population over this period. Nevertheless, there is a strong

association between these two variables among the seven heartland states with the most

agriculture intensive – the Dakotas, Iowa, and Nebraska – losing more relative popula-

tion. Using the model, I find that declines in agricultural shipping costs generate a similar

pattern in the model. While there is no strong correlation overall between the model and

data generated changes in population, the correlation is strong among the heartland states

(77%) as the model captures the observed relative population declines of these states.37

Mechanisms. Figure 10 shows how changes in wages and rental rates vary as a func-

tion of a location’s initial specialization in agriculture. Because land is a fixed factor, and

the demand for agricultural products is rising, the rental rate of land rises by more in

more agriculture-intensive locations. Wages, however, move in the opposite direction, as

these locations become less attractive and people move out, taking with them the con-

sumption of non-tradable goods which are very labor intensive. Figure 11 shows how

the composition of gross output in each state changes. In Panel (a), I plot each state’s

change in agriculture’s share of gross output while Panel (b) plots each state’s change in

non-tradables’ share of gross output. Places that were initially intensive in agriculture

actually become more agriculture-intensive intensive, as demand for agricultural goods

in these places rises. In Panel (b), we see that agriculture-intensive areas are losing non-

tradable output.

36This is computed for state n as log
(

s1980
n

s1950
n

)
where st

n = popt
n

∑i popt
n

.
37This is as expected. The model, which incorporates only a single mechanism occurring over a 30 year

period, cannot explain population changes across all states, but can correctly replicate the population de-
cline in the most agriculture-intensive states.
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Figure 9: Population Changes and Initial Specialization in Agriculture

(a) Data (b) Model

Note: These figures plot, along the x-axis, the percentage of employment in agriculture in each state in 1950
and along the y-axis, the change in population as computed in the data in Panel (a) and in the model in
Panel (b). The line is the best linear fit, the slope of which is reported below the figure.

Figure 10: Effects on Factor Prices

(a) Wages (b) Rental Rates

Note: These figures plot, along the x-axis, the percentage of employment in agriculture in each state in 1950
and along the y-axis, the wages in Panel (a) and in rental rates in Panel (b). The line is the best linear fit,
the slope of which is reported below the figure.
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Figure 11: Effects on Sectoral Composition of Gross Output

(a) Agriculture (b) Non-Tradables

Note: These figures plot, along the x-axis, the percentage of employment in agriculture in each state in 1950
and along the y-axis, the change in agriculture’s share of gross output in Panel (a) and the change in the
non-traded share of gross output in Panel (b). The line is the best linear fit, the slope of which is reported
below the figure.
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5 Conclusion

This paper studies the link between the structure of domestic trade costs across com-

modities and the spatial distribution of the population within countries. I use a historical

setting – the American Heartland over the postwar period – to document that changes

in the costs of shipping certain commodities relative to others can have substantial im-

plications for the relative welfare of people living in different regions. I argue that rail

car innovations in the U.S. over this period, which affected only bulk commodities, drove

down the cost of shipping agricultural goods relative to manufactured goods and reduced

the population of America’s agriculture-intensive areas.

I used a simple model to explore the channels through which this could have oc-

curred. I find that reductions in agricultural shipping costs reduce prices by more in

locations farther away from where agricultural goods are produced, making other loca-

tions relatively more attractive for manufacturing production as well as for buying food.

To show that this mechanism is operating in the data, I study flour mills following a

sudden, significant, and exogenously generated reduction in the cost of shipping wheat

versus flour. Consistent with the model’s predictions, I find that this change in trade costs

reduced flour and bread prices by more outside of the agricultural Heartland, and that

flour milling firms entered at higher rates in locations more distant from the agricultural

Heartland. Finally, I specify and calibrate a model of trade between U.S. states in 1950

and find that these changes in trade costs played a considerable role in explaining the

population decline of the Heartland.

My findings suggest that how tariffs differ across commodities, and in particular how

they differ between upstream and downstream goods, plays an important role in shap-

ing the long run spatial distribution of economic activity. This was certainly the case in

postwar America. As the world becomes increasingly connected via supply chains and

policymakers differently apply tariffs on upstream and downstream goods, the distribu-

tion of economic activity may change substantially.
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A Tables and Figures

A.1 Tables

Table A.1: Number of Mills Robustness Checks: Controls & Exposure Measure

Dependent variable: Number of Flour Mills
(1) (2) (3) (4) (5) (6) (7)

1(t > 1963)× log(WMAi), baseline -0.00969∗∗∗ -0.00310∗ -0.00469∗∗∗ -0.00999∗∗∗ -0.00962∗∗∗

(0.00112) (0.00135) (0.00114) (0.00115) (0.00110)
1(t > 1963)× log(WMAi), GAEZ -0.00393∗∗

(0.00127)
1(t > 1963)× log(WMAi), yield -0.00947∗∗∗

(0.00109)

N 24856 24856 24856 24856 24848 24856 24856
County FE 3 3 3 3 3 3 3

Year FE 3 3 3 3 3 3 3

State × year 7 3 7 7 7 7 7

County Time Trends 7 7 3 7 7 7 7

Population 7 7 7 3 7 7 7

Distance to coast 7 7 7 7 3 7 7

Note: This table shows robustness checks corresponding to estimating Equation 6 with a post indicator for all years after the trade cost shock in
1963. Column (1) shows the baseline result. Column (2) adds state by year fixed effects. Column (3) allows each county to follow its own time
trend. Column (4) includes the baseline population level interacted with an indicator variable for each year. Column (5) does the same with the
distance of that county to the coastline. Column (6) uses a different measure of exposure; instead of using wheat production when computing
WMAi, I use wheat yields. Column (7) uses GAEZ’s wheat suitability index as the measure of wheat productivity when computing WMAi.



Table A.2: Milling Capacity Robustness Checks: Controls & Exposure Measure

Dependent variable: sinh−1 (Flour milling capacity)
(1) (2) (3) (4) (5) (6) (7)

1(t > 1963)× log(WMAi), baseline -0.0352∗∗∗ -0.0111+ -0.0139∗∗ -0.0351∗∗∗ -0.0352∗∗∗

(0.00519) (0.00644) (0.00534) (0.00519) (0.00517)
1(t > 1963)× log(WMAi), GAEZ -0.0121∗

(0.00589)
1(t > 1963)× log(WMAi), yield -0.0344∗∗∗

(0.00514)

N 24856 24856 24856 24856 24848 24856 24856
County FE 3 3 3 3 3 3 3

Year FE 3 3 3 3 3 3 3

State × year 7 3 7 7 7 7 7

County Time Trends 7 7 3 7 7 7 7

Population 7 7 7 3 7 7 7

Distance to coast 7 7 7 7 3 7 7

Note: This table shows robustness checks corresponding to estimating Equation 6 with a post indicator for all years after the trade cost shock in
1963. Column (1) shows the baseline result. Column (2) adds state by year fixed effects. Column (3) allows each county to follow its own time
trend. Column (4) includes the baseline population level interacted with an indicator variable for each year. Column (5) does the same with the
distance of that county to the coastline. Column (6) uses a different measure of exposure; instead of using wheat production when computing
WMAi, I use wheat yields. Column (7) uses GAEZ’s wheat suitability index as the measure of wheat productivity when computing WMAi.



Table A.3: Robustness Checks: Functional Form

Number of Flour Mills Wheat Flour Capacity

(1) (2) (3) (4) (5) (6) (7)
OLS PPML OLS, 1(n ≥ 0) Logit, 1(n ≥ 0) OLS, sin−1 OLS PPML

1(t > 1963)× log(WMAi), baseline -0.00969∗∗∗ -0.0199 -0.00578∗∗∗ -0.152∗∗∗ -0.0352∗∗∗ -3.524 -0.0195
(0.00112) (0.0140) (0.000786) (0.0366) (0.00519) (2.859) (0.0187)

N 24856 3800 24856 2800 24856 24856 3800
County FE 3 3 3 3 3 3 3

Year FE 3 3 3 3 3 3 3

Note: This table shows robustness checks corresponding to estimating Equation 6 with a post indicator for all years after the trade cost shock in 1963.



A.2 Figures

Figure A.1: Distribution of U.S. Population Across Regions, Since 1900

Note: This figure shows the percentage of the U.S. population living in each region in each year. Within a
year, the sum of values across the four regions is 100. Regions are defined based on U.S. Census
designations. Source: Decennial U.S. Census.



Figure A.2: Agricultural Goods as a Percentage of Gross Output, by State (1950)

Note: This figure shows percentage of each state’s export (defined as tradable output) from the
agricultural sector in the initial period. Source: USDA (1949), Census of Manufacturers (1947),
Census of Mining (1954) and author’s calculations.

Figure A.3: Annual Revenue Per Ton Earned, Motor Carriers

Note: This figure shows annual revenue per ton earned by Class I motor carriers from agricultural goods
and manufactured goods using data from the Interstate Commerce Commission’s Freight Commodity
Statistics.



Figure A.4: Key Model Inputs

(a) Sectoral Expenditure Shares

(b) Agriculture Share of Total Output by Sector

Note: Panel (a) shows the median percentage of final expenditure spent on goods from each sector across
all 48 states, as computed from equation 12 and data as described in Section 4. Panel (b) shows the
agricultural sector’s share of final output for each sector, as computed from the 1949 BLS input-output
table. Source: USDA, Census of Manufacturers (1947), Census of Mining (1954) and author’s calculations.



Figure A.5: Agriculture Specialization and Own-Import Shares

(a) Predicted and Observed Own-Import Shares

(b) Predicted and Observed Export Shares

Note: Panel (a) shows the correlation between each state’s own import shares for agricultural
goods and that state’s agricultural percentage of exports in 1950. Panel (b) shows the relationship
between export shares are observed in the data (on the x-axis) and the predicted export shares
that I use in the calibration of the data. Source: Carload Waybill Sample Statistics (1949), USDA,
Census of Manufacturers (1947), Census of Mining (1954) and author’s calculations.



Figure A.6: Changes in Trade Costs Across States

Note: This figure shows changes in trade costs between each state as fed into the model,
computed from equation 15. Source: Carload Waybill Sample Statistics and author’s calculations.



B Data Appendix

B.1 Trade Data

I compile data on trade separately between U.S. states and regions from the Interstate

Commerce Commission. The advantage to the region level data is that it more complete,

while some state to state pairs are omitted if trade flows are too low. For the quantitative

model, I use data on state to state trade flows. In addition to these data, I obtain aggregate

data on railroad revenue earned and tons shipped in each year from the Freight Commod-

ity Statistics, which cover Class I railroads.1 The sampling process includes selecting all

waybills, which are contracts between producers and shippers, with numbers ending in

1. This sampling procedure is supposed to result in an unbiased, representative sample

of one percent of total traffic, according to the Interstate Commerce Commission.

Figure B.1: Example of Carload Waybill Sample Statistics, State-to-State Trade Data

Note: This figure shows a sample of the state to state trade data that I used to estimate changes in trade
costs over time, as well as to calibrate the quantitative model in Section 2. Source: Carload Waybill Sample
Statistics.

B.2 Railroad Network

I obtained high resolution images of a 1957 Army Corps of Engineers Railroad Map

of the United States from Stanford University Libraries, which was then hand-digitized
1Class I railroads are the largest railroad companies; generally, it includes all railroad companies with

annual revenues exceeding a given threshold.



onto a Lambert Conic projection. I use this to measure railroad distances between the

centroids of each county as in Section 3 and each state as in Section 4.



Figure B.2: Sample of 1957 Army Corps of Engineers Railroad Map

Note: This shows the lower right hand corner of the 1957 railroad map that I have digitized and is used throughout the paper.



B.3 Flour Data

B.3.1 Mill Locations

I collected data on the location, capacity, and ownership of flour mills from the North-

western Miller’s annual Directory of U.S. Flour mills, which was compiled and shipped

to their subscribers. Figure B.3 gives an example of what these directories look like for

two separate years (1985 and 1961 respectively). Figure A.4 shows summary statistics

describing the key variables obtained from these directories. Over this period, the num-

ber of mills falls roughly in half but total capacity of all mills rises, due to an increasing

average size of the remaining mills. To construct a county-level panel of mills, and to

Table A.4: Flour Mill Summary Statistics

Top 5 Top 15
Year # Mills Total Capacity Avg. Size % Capacity % Capacity % Big
1959 580 1072.15 1849 25.65 65.52 25.34
1961 553 1021.30 1847 23.64 60.81 25.32
1965 426 953.88 2239 22.46 60.80 25.12
1967 360 951.71 2644 21.90 60.48 28.33
1971 325 957.02 2945 20.86 59.12 28.00
1975 267 951.78 3565 19.52 59.54 34.46
1985 228 1102.62 4836 17.73 55.61 38.60
1990 207 1198.12 5788 17.49 54.09 43.00
Source: The Northwestern Miller. Note: Top 5 are the top 5 producers of wheat in 1963:
Kansas, North Dakota, Texas, Oklahoma, and Washington which together accounted for
48% of total U.S. wheat production. Top 15 are the top 15 producers of wheat in 1963,
which accounted for 75% of total wheat production. Total capacity is in 1,000 of cwt per
day. Big indicates plants that were part of a multi-unit firm in their first year of entry

assign a wheat market access term to each mill, I use the listed location information and

the OpenCageGeocode API in Python to match plants to latitude-longitude coordinates.

I then map these coordinates to modern-day county FIPS codes. I identify unique plants

over time based on the following algorithm. First, I sort the data by state, city plant name,

and year. Then I check the following steps:

1. If the state, city, and name fields are the same over time and there are no duplicates

of the year given the state-county-name, then this is a uniquely identified plant.

2. Suppose the state and city are the same, only one plant is listed, and there are no du-



Figure B.3: Milling Directory Examples

Note: Flour milling directory data...

plicates of the year given a state-city, but the plant name changes across years. Then

I check whether there is a secondary owner listed that explains the name change.

For example, if in 1971 the firm is listed as “Alabama Flour Mills” and as “Conagra”

in 1975, but Conagra is listed as the secondary owner in 1971, then this is a unique

plant observation (and reflects an acquisition by Conagra).

3. Suppose the state and city are the same, but many plants are listed, and names

change throughout different years. If the addresses match across time, I use this to

uniquely identify plants. If name changes can be connected through time with in-

formation listed on the secondary owner, then I use this to identify firms. If address

information is incomplete across years, I use the firm sizes to differentiate across

firms. For example, it is unlikely a plant quadrupled in size in a few years.

B.3.2 Prices

Producer flour prices. I collected data on flour producer prices from a few different

sources. My primary source is the Southwestern Miller, which published weekly flour

prices from a sample of flour mills in each major flour market. Because these are prices

reported by mills themselves where they are produced, I consider these to be producer

prices. Table A.5 lists flour prices in 1962, the last year prior to the change, and 1966,

several years after the shock for each location in the sample. I was not able to obtain



Figure B.4: Southwestern Miller Flour Price Data

price data after 1968, so that is the last year in my sample. Minneapolis flour prices are

not included in later years; thus, when that series ends, I use data on flour prices from

Minneapolis mills from the USDA as part of the monthly “Wheat Situation” report.

Consumer flour and bread prices. I digitized data on the annual price of wheat and flour

for every city listed in the BLS’s “Estimated Food Retail Prices by Cities”. While the set of

cities varies slightly over time, most years include around twenty cities. Table A.6 reports

bread and flour prices for the set of cities in the sample for 1962 and 1964.



Figure B.5: The Decline of the Box Car

(a) Covered Hopper Car

(b) Changes in Rail Car Types, 1963-1977
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Note: Panel (a) shows an image of a covered hopper car for transporting grain, from the New York Times
(1964). Panel (b) shows the change in percentage of total cars represented by each rail car type, from the
ICC (1979).



Table A.5: Flour Producer Price Summary Statistics

State Cities Flour Type Price ($) Price Ratio
1962 1966

Alabama Birmingham Standard Patent 21.90 21.02 0.96

Illinois Chicago Standard Patent 20.33 20.56 1.01

Kansas Wichita, Salina, Arkansas City, Hutchinson Standard Patent 20.92 21.13 1.01

Minnesota Minneapolis Standard Patent 21.82 22.48 1.03

Missouri Kansas City Standard Patent 20.92 21.13 1.01

Nebraska Omaha Standard Patent 19.42 20.09 1.03

New York New York Standard Patent 23.37 22.85 0.98

Oregon Portland Family 27.10 28.49 1.05

Pennsylvania Pittsburgh Standard Patent 21.98 19.66 0.89

Note: This table shows summary statistics of flour producer prices for each location in which I observe
prices. This price data is used in Section 3 to estimate the effects of changes in upstream trade costs on
downstream prices. Source: Southwestern Miller and BLS.



Table A.6: Flour Consumer Price Summary Statistics

State City Flour Price ($) Ratio Bread Price ($) Ratio
1962 1964 1962 1964

Georgia Atlanta 1.92 1.90 0.99 0.64 0.62 0.97

Maryland Baltimore 1.83 1.88 1.03 0.68 0.75 1.10

Massachusetts Boston 1.83 1.87 1.02 0.70 0.69 0.99

Illinois Chicago 1.75 1.70 0.97 0.69 0.62 0.90

Ohio Cincinnati 1.75 1.67 0.95 0.64 0.63 0.98

Ohio Cleveland 1.78 1.69 0.95 0.67 0.68 1.01

Michigan Detroit 1.70 1.68 0.99 0.61 0.56 0.92

Texas Houston 1.87 1.87 1.00 0.55 0.57 1.04

Kansas Kansas City 1.67 1.72 1.03 0.67 0.66 0.99

California Los Angeles 2.02 1.85 0.92 0.88 0.92 1.05

Minnesota Minneapolis 1.84 1.82 0.99 0.62 0.59 0.95

New York New York 1.79 1.81 1.01 0.79 0.80 1.01

Pennsylvania Philadelphia 1.86 1.77 0.95 0.74 0.72 0.97

Pennsylvania Pittsburg 1.81 1.73 0.96 0.71 0.68 0.96

California San Francisco 2.11 2.04 0.97 0.84 0.88 1.05

Washington Seattle 2.12 2.07 0.98 0.80 0.80 1.00

Missouri St Louis 1.78 1.79 1.01 0.65 0.63 0.97

District Of Columbia Washington 1.92 1.95 1.02 0.67 0.65 0.97

Note: This table shows summary statistics of flour and bread consumer prices for each location in which I
observe prices. This price data is used in Section 3 to estimate the effects of changes in upstream trade
costs on downstream prices. Flour prices are for five pounds of wheat flour and bread prices are for one
pound of bread. All prices are in 1985 dollars. Source: BLS, Estimated Retail Prices of Food in cities.



C Model Appendix

C.1 Model Setup

C.1.1 Flour Demand

Each agent chooses cF
ni, cM

ni to solve:

U(cF
i , cM

i ) = cM
i + ln

(
cF

i

)
where:

cF
i =

[
∑
n
(cF

ni)
σF−1

σF

] σF
σF−1

and cM
i =

[
∑
n

cM
ni

]
subject to a budget constraint of

wi = ∑
n

pM
ni cM

ni + pF
nic

F
ni

From this maximization problem we have demand functions for each variety of flour:

cF
ji = pM

(
pF

ji

)−σF σF

σF − 1

(
PF

i

)σF−1

Then the total amount of spending on flour by state i is:

∑
j

pF
jic

F
ji = ∑

j
pM
(

pF
ji

)1−σF σF

σF − 1

(
PF

i

)σF−1
= pM σF

σF − 1

This yields flour import shares – the share of flour imported to state i by state j – of:

πF
ji =

pF
jic

F
ji

∑j pF
jic

F
ji
=
(

pF
ji

)1−σF
(

PF
i

)σF−1



C.1.2 Indirect Utility

Next we want to find the indirect utility function in order to compute welfare. First

sum over origins to find aggregate flour consumption:

cF
i =

∑
n

(
pM
(

pF
ji

)−σF σF

σF − 1

(
PF

i

)σF−1
) σF−1

σF


σF

σF−1

=
pM

PF
i

σF

σF − 1

Then to find cM
i :

wi = pMcM
i + ∑

n
pF

ni p
M
(

pF
ni

)−σF σF

σF − 1

(
PF

i

)σF−1

cM
i =

wi

pM −
σF

σF − 1

(
PF

i

)σF−1
∑
n

(
pF

ni

)1−σF
=

wi

pM −
σF

σF − 1

(
PF

i

)σF−1 (
PF

i

)1−σF
=

wi

pM −
σF

(σF − 1)
PF

i

Then, the indirect utility function for a single agents is given by (assuming income is

sufficiently large):

V(PF
i , Ii) = wi + ln

(
σF

σF − 1

)
− ln

(
PF

i

)
− σF

σF − 1
PF

i (17)

C.1.3 Labor Mobility

Given the above indirect utility common across all agents in a location, and the as-

sumption that indirect utility of a worker l in state i is vl
i = vi + εl

i :

vl
i =

(
wi + ln

(
σF

σF − 1

)
− ln

(
PF

i

)
− σF

σF − 1
PF

i

)
+ εl

n

Agents choose to live in the state that gives them the largest indirect utility. Assuming

that εl
n ∼ Gumbell, the probability that an agent i chooses a state n is given by (or the

share of agents living in state n):

λi = pr
(

vl
i ≥ max

n′ 6=n
vl

n′

)
=

exp(vi)

∑n′ exp(vn′)
=

exp
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)
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Given an exogenous level of the country’s population size L, the number of people living

in state i is: Li = λiL

C.1.4 Flour Millers’ Problem

Flour millers in state i choose the amount of wheat to import from each state j in order

to minimize costs subject to a level of production:

min
cW

ni

∑
n

pW
ni cW

ni s.t. YF
it = TF

it

[
∑
n

(
cW

ni

) σW−1
σW

] σW
σW−1

Then, the first order conditions are:

[cW
ni ] : pW

ni − λitTF
it

[
∑
n

(
cW

ni

) σW−1
σW

] 1
σW−1 (

cW
ni

)−1/σW
= 0

Taking the ratio of first order conditions for different origins (holding i fixed):

pW
ni

pW
it

=

(
cW

ni
cW

ji

)−1/σW

Solving for cW
ni : (

pW
ni

pW
ji

)−σW

cW
ji = cW

ni

Substituting this into the constraint:
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Then, solving for consumption of wheat from state j in state i:

cW
ji =
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i
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i

(
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ji

)−σW
(

PW
i

)σW



which means that total spending on wheat in state i is:

∑
j
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ji cW

ji =
YF

i
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(
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)σW

∑
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Then the share of wheat imported from state j by state i, πW
ji is:
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C.2 Proofs of Testable Predictions

C.2.1 Main Theorems

If πW
NN < πW

KK and τ̂W < 1, then the following theorems hold.

Theorem 1 (Flour producer price effect). p̂F
NN < p̂F

KK

Proof.

p̂F
NN < p̂F

KK ⇐⇒
P̂W

N

T̂F
N

<
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K

T̂F
K
⇐⇒ P̂W
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K

Then note that:
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(
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)1−σW
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(πW
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since πW
NN − πW
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)1−σW

πW
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⇐⇒
[

πW
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)1−σW

] 1
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<

[
πW
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(
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] 1
1−σW ⇐⇒ P̂W
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K

Theorem 2 (Flour consumer price effect). If πW
NN < πW

KK and τ̂W < 1, then P̂F
N < P̂F

K .

Proof. Define a = 1− σF < 0. By proposition (2),

πF
KK > πF

KN ⇐⇒ πF
KK > 1− πF

NN ⇐⇒ πF
KK + πF

NN > 1

Then, applying proposition (3), P̂W
N < P̂W

K ≤ 1 ⇐⇒
(

P̂W
N
)a

>
(

P̂W
K
)a ≥ 1 ⇐⇒(

P̂W
N
)a −

(
P̂W

K
)a

> 0,

⇐⇒ πF
NN

((
P̂W

N

)a
−
(

P̂W
K

)a)
+ πF

KK

((
P̂W

N

)a
−
(

P̂W
K

)a)
>
(

P̂W
N

)a
−
(

P̂W
K

)a

⇐⇒ πF
NN

((
P̂W

N

)a
−
(

P̂W
K

)a)
−
(

P̂W
N

)a
> πF

KK

((
P̂W

K

)a
−
(

P̂W
N

)a)
−
(

P̂W
K

)a

⇐⇒ πF
NN

(
P̂W

N

)a
+ (1− πF

NN)
(

P̂W
K

)a
> πF

KK

(
P̂W

K

)a
+ (1− πF

KK)
(

P̂W
N

)a

⇐⇒ πF
NN

(
P̂W

N

)a
+ πF

KN

(
P̂W

K

)a
> πF

KK

(
P̂W

K

)a
+ πF

NK

(
P̂W

N

)a

[
πF

NN

(
P̂W

N

)a
+ πF

KN

(
P̂W

K

)a] 1
1−σF <

[
πF

KK

(
P̂W

K

)a
+ πF

NK

(
P̂W

N

)a] 1
1−σF ≤ 1 ⇐⇒ P̂F

N < P̂F
K

Theorem 3 (Flour production effect). ŶN > Ŷ∗K

Proof.

ŶF
N > ŶF

K ⇐⇒ λNN ĉF
NN + (1− λNN)ĉF

NK > λKK ĉF
KK + (1− λKK)ĉF

KN

where λni =
cF

ni
cF

ni+cF
nn

is the share of n’s flour production shipped to i in the initial equil-

birum.

⇐⇒ λNN(P̂W
N )−σF

(
P̂F

N

)σF−1
+ (1− λNN)(P̂W

N )−σF
(

P̂F
K

)σF−1

> λKK(P̂W
K )−σF

(
P̂F

K

)σF−1
+ (1− λKK)(P̂W

K )−σF
(

P̂F
N

)σF−1



From Proposition 3 we know that: P̂W
N < P̂W

K , and

P̂F
N < P̂F

K ⇐⇒
[
πF

NN(P̂W
N )1−σF + πF

KN(P̂W
K )1−σF

] 1
1−σF <

[
πF

KK(P̂W
K )1−σF + πF

NK(P̂W
N )1−σF

] 1
1−σF

so then it must be that P̂W
N < P̂F

N < P̂F
K < P̂W

K . We claim the following:

* (P̂W
N )−σF(P̂F

N)
σF−1 > (P̂W

K )−σF(P̂F
K)

σF−1 which follows from the inequality, since P̂W
N

P̂F
N
<

1 and P̂W
K

P̂F
K
> 1

* (P̂W
N )−σF(P̂F

K)
σF−1 > (P̂W

K )−σF(P̂F
N)

σF−1 which follows immediately.

Since our original inequality is a convex combination of these two conditions added to-

gether, we are done.

Theorem 4 (Pro-competitive effect). ϕ̂∗N < ϕ̂∗K

Proof. First, write ϕ∗i in changes:

ϕ̂∗i = P̂W
i

(
ŵi f̂e

) 1
σF−1

(
∑

j
λij(P̂F

j )
σF−1

(
τ̂F

ij

)1−σF

) 1
1−σF

= P̂W
i

(
∑

j
λij(P̂F

j )
σF−1

) 1
1−σF

Then, proceed:

ϕ̂∗N < ϕ̂∗K ⇐⇒
(
(P̂W

N )1−σF λNN(P̂F
N)

σF−1 + (P̂W
N )1−σF λNK(P̂F

K)
σF−1) 1

1−σF

<
(
(P̂W

K )1−σF λKK(P̂F
K)

σF−1 + (P̂W
K )1−σF λKN(P̂F

N)
σF−1) 1

1−σF (18)

⇐⇒ (P̂W
N )1−σF λNN(P̂F

N)
σF−1 + (P̂W

N )1−σF(1− λNN)(P̂F
K)

σF−1

> (P̂W
K )1−σF λKK(P̂F

K)
σF−1 + (P̂W

K )1−σF(1− λKK)(P̂F
N)

σF−1 (19)

We know that P̂W
N < P̂W

K , and

P̂F
N < P̂F

K ⇐⇒
[
πF

NN(P̂W
N )1−σF + πF

KN(P̂W
K )1−σF

] 1
1−σF <

[
πF

KK(P̂W
K )1−σF + πF

NK(P̂W
N )1−σF

] 1
1−σF

so then it must be that P̂W
N < P̂F

N < P̂F
K < P̂W

K . We claim the following:



* (P̂W
N )1−σF(P̂F

N)
σF−1 > (P̂W

K )1−σF(P̂F
K)

σF−1 which follows from the inequality, since
P̂W

N
P̂F

N
< 1 and P̂W

K
P̂F

K
> 1

* (P̂W
N )1−σF(P̂F

K)
σF−1 > (P̂W

K )1−σF(P̂F
N)

σF−1 which follows immediately.

Since the last expression is a convex combination of these two conditions added together,

we are done.

Theorem 5 (Flour mill location effect). M̂∗N > M̂∗K

Proof. M̂∗N > M̂∗K ⇐⇒ M̂N
(1−G(ϕ′N))
(1−G(ϕ′N)

> M̂K
(1−G(ϕ′K))
(1−G(ϕ′K)

⇐⇒ (1−G(ϕN ϕ̂N))
(1−G(ϕN)

> (1−G(ϕK ϕ̂K))
(1−G(ϕK)

.

If G(.) is pareto, then 1− G(ϕ) = Aθi ϕθi . Then we need to show that:

⇐⇒
AθN ϕθN

N ϕ̂−θN
N

AθN ϕ−θN
N

>
AθK ϕ−θK

K ϕ̂−θK
K

AθK ϕ−θK
K

⇐⇒ ϕ̂−θN
N > ϕ̂−θK

K ⇐⇒ ϕ̂N < ϕ̂K

which we show in Theorem 4.

Theorem 6 (Decline of the Heartland). ∆vN > ∆vK and L̂N > L̂K.

Proof, Welfare.

∆vN > ∆vK ⇐⇒ v′N− vN > v′K− vK ⇐⇒ − ln
(

P̂F
N

)
− σF

σF − 1
∆PF

N > − ln
(

P̂F
K

)
− σF

σF − 1
∆PF

K

From Theorem 2 we know that P̂F
N < P̂F

K ⇐⇒ − ln
(

P̂F
N
)
> − ln

(
P̂F

K
)
. Then πW

NN <

πW
KK ⇐⇒ PW

N > PW
K ⇐⇒ PF

N > PF
K , PF

N > PF
K ⇐⇒ −PF

N < −PF
K . By proposition 2,

P̂F
N < P̂F

K ⇐⇒ P̂F
N − 1 < P̂F

K − 1 < 0. Multiplying these together (since both are negative)

yields,

−PF
N(P̂F

N − 1) > −PF
K(P̂F

K − 1)

Multiplying through by the positive constant σF
σF−1 and adding to our original condition

yields the result.

Proof, Population. L̂N > L̂K ⇐⇒
exp(v′N−vN)

λNexp(v′N−vN)+(1−λN)exp(v′K−vK)
>

exp(v′K−vK)
λNexp(v′N−vN)+(1−λN)exp(v′K−vK)

⇐⇒

exp(v′N − vN) > exp(v′K − vK) which is true by the above welfare result.



C.2.2 Auxiliary Propositions

Proposition 1 (Primitives imply condition). Suppose that TM
K

TM
N

<
TW

K
TW

N
. Then, πW

NN < πW
KK.

Proof.

πW
NN < πW

KK ⇐⇒
(
wNTW

N
)σW−1(

wNTW
N

)σW−1
+ (τW)

1−σW
(
wKTW

K

)σW−1 <

(
wKTW

K
)σW−1(

wKTW
K

)σW−1
+ (τW)

1−σW
(
wNTW

N

)σW−1

⇐⇒
(

wNTW
N

)σW−1
((

wKTW
K

)σW−1
+
(

τW
)1−σW

(
wNTW

N

)σW−1
)

<
(

wKTW
K

)σW−1
((

wNTW
N

)σW−1
+
(

τW
)1−σW

(
wKTW

K

)σW−1
)

⇐⇒
(

wNTW
N

)σW−1
((

τW
)1−σW

(
wNTW

N

)σW−1
)
<
(

wKTW
K

)σW−1
((

τW
)1−σW

(
wKTW

K

)σW−1
)

⇐⇒
(

wNTW
N

)2(σW−1)
<
(

wKTW
K

)2(σW−1)
⇐⇒

(
wNTW

N

)σW−1

<
(

wKTW
K

)σW−1
⇐⇒ wNTW

N < wKTW
K

Then, since wi =
1

TM
i

,

⇐⇒ 1
TM

N
TW

N <
1

TM
K

TW
K ⇐⇒

TM
K

TM
N

<
TW

K

TW
N

which is true by assumption.

Proposition 2. πF
KK > πF

KN

Proof. Denote vi = wω
i (PW

i )1−ω/TF
i .

πF
KK > πF

KN ⇐⇒
v1−σF

K

v1−σF
K + (τF)1−σF v1−σF

N

>
(τF)1−σF v1−σF

K

(τF)1−σF v1−σF
K + τFv1−σF

N

⇐⇒ 1

v1−σF
K + (τF)1−σF v1−σF

N

>
(τF)1−σF

(τF)1−σF v1−σF
K + v1−σF

N

⇐⇒ (τF)1−σF v1−σF
K + v1−σF

N >
(

v1−σF
K + (τF)1−σF v1−σF

N

)
(τF)1−σF



⇐⇒ 1 > (τF)1−σF ⇐⇒ 1 < τF

which is true since trade is costly.

Proposition 3. If πW
NN < πW

KK and τ̂W < 1, then P̂W
N < P̂W

K .

Proof.

τ̂W < 1 ⇐⇒
(

τ̂W
)1−σW

> 1 ⇐⇒ πW
NN − πW

KK >
(

τ̂W
)1−σW

(πW
NN − πW

KK)

since πW
NN − πW

KK < 0.

⇐⇒ πW
NN − πW

KK +
(

τ̂W
)1−σW

>
(

τ̂W
)1−σW

πW
NN −

(
τ̂W
)1−σW

πW
KK +

(
τ̂W
)1−σW

⇐⇒ πW
NN + (1− πW

NN)
(

τ̂W
)1−σW

> πW
KK + (1− πW

KK)
(

τ̂W
)1−σW

since 1− πW
ii = πW

ni :

πW
NN + πW

KN

(
τ̂W
)1−σW

> πW
KK + πW

NK

(
τ̂W
)1−σW

⇐⇒
[

πW
NN + πW

KN

(
τ̂W
)1−σW

] 1
1−σW

<

[
πW

KK + πW
NK

(
τ̂W
)1−σW

] 1
1−σW ⇐⇒ P̂W

N < P̂W
K

C.3 Model in Changes: System of Equations

Given parameter estimates for σF and σW , changes in total population L̂, changes

in productivities T̂F
i , T̂W

i , and T̂M
i , changes in trade costs τ̂F

ji , τ̂W
ji , measures of the ini-

tial import shares for wheat and flour πW
ji , πF

ji, the initial export shares for wheat and

flour ΠW
ji , ΠF

ji, population shares, λi and the initial price of flour, changes in allocations

{∆vi, λ̂i, L̂i, ĉF
ni, ĉW

ni , ŶF
i , ŶW

i } and in prices {ŵi, p̂F
ni, p̂W

ni , P̂F
i , P̂W

i } are given by:

ŵi = T̂M
i (20)

p̂W
ni =

ŵn
T̂W

n
τ̂W

ni (21)



p̂F
ij =

P̂W
i

T̂F
i

τ̂F
ni (22)

P̂F
i =

(
∑n πF

ni( p̂F
ni)

1−σF
) 1

1−σF (23)

P̂W
i =

(
∑n πW

ni ( p̂W
ni )

1−σW
) 1

1−σW (24)

L̂i = L̂λ̂i (25)

λ̂i =
exp(∆vi)

∑n λnexp(∆vn)
(26)

∆vi = ∆wi − ln
(

P̂F
i
)
− σF

σF−1 ∆PF
i (27)

ŶF
i = ∑j τ̂F

ij ΠF
ij ĉ

F
ij (28)

ŶW
i = ∑j τ̂W

ij ΠW
ij ĉW

ij (29)

ĉW
ni =

ŶF
i

T̂i

(
p̂W

ji

)−σW (
P̂W

i
)σW (30)

ĉF
ji =

(
p̂F

ji

)−σF (
P̂F

i
)σF−1 (31)

C.4 Quantitative Model

The baseline model is outlined in Section 4. Below I define an equilibrium in changes,

where x̂ = x′/x.

C.4.1 System of Equations in Changes

Given parameters {ε, θj, γ
j
n, γ

j,p
n , α

j
n, δ

j
n}, data on {Ln, ln, Pn, λn, wn, rn, Dn, π

j
in}, and changes

in the exogenous variables {L̂, τ̂k
ni}, an equilibrium is a set of changes in allocations

{v̂n, În, ĉk
n, π̂k

ni, L̂n, Xk′
n , Ŷk

n , D̂n} and prices {P̂k
n, ŵn, r̂n} for a total of 6N + 4KN + KN2 un-

knowns that are defined by the following set of 6N + 4KN + KN2 equations:

N v̂n = În ·ΠK
k=1

(
P̂k

n
)−αk

n (32)

N I′n = ŵnwn +
rn r̂nln+D′n

Ln L̂n
(33)

N L̂n = L̂ v̂ε
n

∑n λn v̂ε
n

(34)

N2K π̂k
in =

(τ̂k
in ĉk

i )
−θk

∑i πk
in(τ̂

k
in ĉk

i )
−θk

(35)

NK ĉj
n = ŵγj

n r̂
δj
n ∏K

p
(

P̂p
n
)γp,j

(36)

NK Xk′
n = αkLn L̂n I′n + ∑K

j=1 γ
k,j
n ∑N

i=1 X j′

i π
j
inπ̂

j
in (37)



NK Yk
nŶk

n = ∑i Xk′
i π̂k

niπ
k′
ni (38)

N D′n = ∑k ∑i πk
inπ̂k

inXk′
n −∑k ∑i π̂k

niX
k′
i πk

ni (39)

N ŵnwn L̂nLn = ∑j ω
j
nγ

j
nY j′

n (40)

N r̂nrnln = ∑j(1−ω
j
n)γ

j
nY j′

n (41)

NK P̂k
n =

[
∑i πk

in
(
ĉk

i τ̂k
in
)−θk

] 1
−θk (42)

C.4.2 Solving the Model

I solve the model using Python’s optimization routines and the following algorithm:

1. Guess values for wages ŵn, rents r̂n, population L̂n, prices, P̂j
n, and spending X j

n.

2. Given the guess for prices, construct ĉj
n from equation 36.

3. Construct a model-implied value for prices ˜̂Pj
n from equation 42.

4. Construct π̂k
in from equation 35.

5. Construct Y′n = YnŶn from equation 38.

6. Construct trade imbalances D′n from equation 39 using the guess for spending.

7. Using population, wage, and rental rate guesses, plus trade imbalance from above,

construct per-capita income in the post period I′n from equation 33.

8. Compute changes in welfare from equation 32, and model-implied changes in pop-

ulation ˜̂Ln from equation 34.

9. Compute a model-implied value of spending X̃k′
n from 37.

10. Form objective function based on:

0 = P̂j
n − ˜̂Pj

n

0 = L̂n − ˜̂Ln

0 = X̃k′
n − Xk′

n

0 = r̂n −
∑j(1−ω

j
n)γ

j
nY j′

n
rnln

0 = ŵn −
∑j ω

j
nγ

j
nY j′

n

wnLn L̂n



where the last two lines come from equations 41 and 40 respectively. The optimiza-

tion procedure then iterates through steps 1 through 10 until all values of 10 are

zero.

C.4.3 Quantifying Trade Costs

To feed bilateral changes in trade costs into the model, I want to measure initial trade

costs along each pair of locations. I assume that trade costs between two locations are the

product of the railroad distance of the route and a constant X, which coverts distance to

revenue: τod = kmκ
od · X. If I observed revenue per ton earned along every route, then I

could use that to measure initial trade costs along each pair of states. However, I do not

observe this in the data for every route since there is no trade in agricultural products

along some routes. Aggregating over every route where revenueod > 0, I can compute

total RTM:

RTM =
∑od revenueod

∑o′d′ tonso′d′ · kmo′d′

Then, since revenueod = coτodTonod, I can re-write this as:

RTM =
∑od coτodTonod

∑o′d′ tonso′d′ · kmo′d′
=

∑od cokmκ
od · X · Tonod

∑o′d′ tonso′d′ · kmo′d′
= X

∑od cokmκ
od · Tonod

∑o′d′ tonso′d′ · kmo′d′

Setting these two equal to each other and solving for X:

∑od revenueod

∑o′d′ tonso′d′ · kmo′d′
= X

∑od co · kmκ
od · Tonod

∑o′d′ tonso′d′ · kmo′d′
=⇒ X =

∑od revenueod
∑o′d′ tonso′d′ ·kmo′d′

∑od co·kmκ
od·Tonod

∑o′d′ tonso′d′ ·kmo′d′

I measure co, which is the cost of producing agricultural goods at location o as the dollar

value received for a unit of wheat in state o, measured from the USDA in 1950. Given this

estimate of X, I solve for initial trade costs across all locations.
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